Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Phase stability of Crn+1GaCn MAX phases from first principles and Cr2GaC thin-film synthesis using magnetron sputtering from elemental targets
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-5036-2833
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Show others and affiliations
2013 (English)In: Physica Status Solidi. Rapid Research Letters, ISSN 1862-6254, E-ISSN 1862-6270, Vol. 7, no 11, 971-974 p.Article in journal (Refereed) Published
Abstract [en]

Ab-initio calculations have been used to investigate the phase stability and magnetic state of Crn+ 1GaCn MAX phase. Cr2GaC (n = 1) was predicted to be stable, with a ground state corresponding to an antiferromagnetic spin configuration. Thin-film synthesis by magnetron sputtering from elemental targets, including liquid Ga, shows the formation of Cr2GaC, previously only attained from bulk synthesis methods. The films were deposited at 650 degrees C on MgO(111) substrates. X-ray diffraction and high-resolution transmission electron microscopy show epitaxial growth of (000) MAX phase.

Place, publisher, year, edition, pages
Wiley-VCH Verlag , 2013. Vol. 7, no 11, 971-974 p.
Keyword [en]
MAX phases; ab-initio calculations; magnetron sputtering; epitaxial thin films
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-103307DOI: 10.1002/pssr.201308025ISI: 000328321700009OAI: oai:DiVA.org:liu-103307DiVA: diva2:688358
Available from: 2014-01-16 Created: 2014-01-16 Last updated: 2017-12-06
In thesis
1. Synthesis and characterization of Ga-containing MAX phase thin films
Open this publication in new window or tab >>Synthesis and characterization of Ga-containing MAX phase thin films
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The study of magnetic Mn+1AXn (MAX) phases (n = 1 − 3, M – a transition metal, A – an A group element, X – C or N) is a recently established research area, fuelled by theoretical predictions and first confirmed experimentally through alloying of Mn into the well-known Cr2AlC and Cr2GeC. Theoretical phase stability investigations suggested a new magnetic MAX phase, Mn2GaC, containing Ga which is liquid close to room temperature. Hence, alternative routes for MAX phase synthesis were needed, motivating a further development of magnetron sputtering from liquid targets.

In this thesis, (Cr1-xMnx)2GaC 0 ≤ x ≤ 1  MAX phase thin films have been synthesized from elemental and/or compound targets, using ultra high vacuum magnetron sputtering. Initial thin film synthesis of Cr2GaC was performed using elemental targets, including liquid Ga. Process optimization ensured optimal target size and crucible geometry for containing the Ga. Films were deposited at 650 °C on MgO(111) substrates. X-ray diffraction and transmission electron microscopy confirms the growth of epitaxial Cr2GaC MAX phase with minor inclusions of Cr3Ga.

To explore the magnetic characteristics upon Mn alloying, synthesis of (Cr0.5Mn0.5)2GaC thin films was performed from elemental Ga and C and a composite Cr/Mn target of 1:1 composition. Films were deposited on MgO(111), Al2O3(0001) (with or without NbN seed layer), and 4° off-cut 4H-SiC(0001) substrates. The films are smooth and of high structural quality as confirmed by X-ray diffraction and transmission electron microscopy. The film composition measured by high resolution energy dispersive X-ray spectroscopy confirms a composition corresponding to (Cr0.5Mn0.5)2GaC. The magnetic response, as measured with vibrating sample magnetometry, displays a ferromagnetic component, however, the temperature dependence of the magnetic moments and saturation fields suggests competing magnetic interaction and possible non-collinear magnetic ordering.

Finally, inspired by theoretical predictions, a new member of the MAX phase family, Mn2GaC, was synthesized. This is the first MAX phase containing Mn as a sole M element. X-ray diffraction and transmission electron microscopy confirms the characteristic MAX phase structure with a 2:1:1 composition. Theoretical work suggests that the magnetic ground state is almost degenerate between ferromagnetic and anti-ferromagnetic. Vibrating sample magnetometry shows ferromagnetic response with a transition temperature Tc of 230 K. However, also for this phase, complex magnetism is suggested. Altogether, the results indicate a new family of magnetic nanolaminates with a rich variation of magnetic ground states.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 29 p.
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1680
National Category
Physical Sciences Materials Engineering
Identifiers
urn:nbn:se:liu:diva-110764 (URN)10.3384/lic.diva-110764 (DOI)978-91-7519-224-6 (ISBN)
Presentation
2014-10-23, Planck, Fysikhuset, Campus Valla, Linköping, 13:15 (English)
Opponent
Supervisors
Available from: 2014-09-22 Created: 2014-09-22 Last updated: 2017-10-17Bibliographically approved

Open Access in DiVA

fulltext(692 kB)204 downloads
File information
File name FULLTEXT01.pdfFile size 692 kBChecksum SHA-512
91cd89b895e635656398202c2cdf9e9c9a1498848e5421246c90872531cedf4d5bf54822c08b9c025a105cfbb03c385639574d0ee71cb8c382ac83847050f1f9
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Petruhins, AndrejsIngason, Arni SigurdurDahlqvist, MartinMockuté, AurelijaJunaid, MuhammadBirch, JensLu, JunHultman, LarsPersson, Per O ARosén, Johanna
By organisation
Thin Film PhysicsThe Institute of Technology
In the same journal
Physica Status Solidi. Rapid Research Letters
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 204 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 513 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf