Change search
ReferencesLink to record
Permanent link

Direct link
Buried screen-printed contacts for silicon solar cells
Dalarna University, School of Technology and Business Studies, Energy and Environmental Technology.
2012 (English)Independent thesis Advanced level (degree of Master (One Year)), 12 credits / 18 HE creditsStudent thesis
Abstract [en]

A Simple way to improve solar cell efficiency is to enhance the absorption of light and reduce the shading losses. One of the main objectives for the photovoltaic roadmap is the reduction of metalized area on the front side of solar cell by fin lines. Industrial solar cell production uses screen-printing of metal pastes with a limit in line width of 70-80 μm.

This paper will show a combination of the technique of laser grooved buried contact (LGBC) and Screen-printing is able to improve in fine lines and higher aspect ratio. Laser grooving is a technique to bury the contact into the surface of silicon wafer. Metallization is normally done with electroless or electrolytic plating method, which a high cost. To decrease the relative cost, more complex manufacturing process was needed, therefore in this project the standard process of buried contact solar cells has been optimized in order to gain a laser grooved buried contact solar cell concept with less processing steps. The laser scribing process is set at the first step on raw mono-crystalline silicon wafer. And then the texturing etch; phosphorus diffusion and SiNx passivation process was needed once. While simultaneously optimizing the laser scribing process did to get better results on screen-printing process with fewer difficulties to fill the laser groove. This project has been done to make the whole production of buried contact solar cell with fewer steps and could present a cost effective opportunity to solar cell industries.

Place, publisher, year, edition, pages
Keyword [en]
Laser scribing, Buried Contacts, Screen-printing, screen-printed.
National Category
Environmental Engineering
URN: urn:nbn:se:du-13593OAI: diva2:683217

In collaboration with Institute for Photovoltaics IPV, University of Stuttgart.

Available from: 2014-01-08 Created: 2014-01-03 Last updated: 2014-01-08Bibliographically approved

Open Access in DiVA

fulltext(3813 kB)428 downloads
File information
File name FULLTEXT01.pdfFile size 3813 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Energy and Environmental Technology
Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 428 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 213 hits
ReferencesLink to record
Permanent link

Direct link