Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction
Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.ORCID iD: 0000-0003-0360-6019
2014 (English)In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 77, 369-379 p.Article in journal (Refereed) Published
Abstract [en]

Industrial excess heat is a large untapped resource, for which there is potential for external use, whichwould create benefits for industry and society. Use of excess heat can provide a way to reduce the useof primary energy and to contribute to global CO2 mitigation. The aim of this paper is to present differentmeasures for the recovery and utilization of industrial excess heat and to investigate how the developmentof the future energy market can affect which heat utilization measure would contribute the mostto global CO2 emissions mitigation. Excess heat recovery is put into a context by applying some of theexcess heat recovery measures to the untapped excess heat potential in Gävleborg County in Sweden.Two different cases for excess heat recovery are studied: heat delivery to a district heating system andheat-driven electricity generation. To investigate the impact of excess heat recovery on global CO2 emissions,six consistent future energy market scenarios were used. Approximately 0.8 TWh/year of industrialexcess heat in Gävleborg County is not used today. The results show that with the proposed recoverymeasures approximately 91 GWh/year of district heating, or 25 GWh/year of electricity, could be suppliedfrom this heat. Electricity generation would result in reduced global CO2 emissions in all of the analyzedscenarios, while heat delivery to a DH system based on combined heat and power production frombiomass would result in increased global CO2 emissions when the CO2 emission charge is low.

Place, publisher, year, edition, pages
Elsevier, 2014. Vol. 77, 369-379 p.
Keyword [en]
Industrial excess heat; Heat recovery; Electricity generation; District heating; CO2 emission; Energy market scenario
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:liu:diva-102611DOI: 10.1016/j.enconman.2013.09.052ISI: 000330494600041OAI: oai:DiVA.org:liu-102611DiVA: diva2:679898
Funder
Swedish Energy Agency
Available from: 2013-12-17 Created: 2013-12-17 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Improved Energy Efficiency and Fuel Substitution in the Iron and Steel Industry
Open this publication in new window or tab >>Improved Energy Efficiency and Fuel Substitution in the Iron and Steel Industry
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

IPCC reported in its climate change report 2013 that the atmospheric concentrations of the greenhouse gases (GHG) carbon dioxide (CO2), methane, and nitrous oxide now have reached the highest levels in the past 800,000 years. CO2 concentration has increased by 40% since pre-industrial times and the primary source is fossil fuel combustion. It is vital to reduce anthropogenic emissions of GHGs in order to combat climate change. Industry accounts for 20% of global anthropogenic CO2 emissions and the iron and steel industry accounts for 30% of industrial emissions. The iron and steel industry is at date highly dependent on fossil fuels and electricity. Energy efficiency measures and substitution of fossil fuels with renewable energy would make an important contribution to the efforts to reduce emissions of GHGs.

This thesis studies energy efficiency measures and fuel substitution in the iron and steel industry and focuses on recovery and utilisation of excess energy and substitution of fossil fuels with biomass. Energy systems analysis has been used to investigate how changes in the iron and steel industry’s energy system would affect the steel plant’s economy and global CO2 emissions. The thesis also studies energy management practices in the Swedish iron and steel industry with the focus on how energy managers think about why energy efficiency measures are implemented or why they are not implemented. In-depth interviews with energy managers at eleven Swedish steel plants were conducted to analyse energy management practices.

In order to show some of the large untapped heat flows in industry, excess heat recovery potential in the industrial sector in Gävleborg County in Sweden was analysed. Under the assumptions made in this thesis, the recovery output would be more than three times higher if the excess heat is used in a district heating system than if electricity is generated. An economic evaluation was performed for three electricity generation technologies for the conversion of low-temperature industrial excess heat. The results show that electricity generation with organic Rankine cycles and phase change material engines could be profitable, but that thermoelectric generation of electricity from low-temperature industrial excess heat would not be profitable at the present stage of technology development. With regard to fossil fuels substituted with biomass, there are opportunities to substitute fossil coal with charcoal in the blast furnace and to substitute liquefied petroleum gas (LPG) with bio-syngas or bio synthetic natural gas (bio-SNG) as fuel in the steel industry’s reheating furnaces. However, in the energy market scenarios studied, substituting LPG with bio-SNG as fuel in reheating furnaces at the studied scrap-based steel plant would not be profitable without economic policy support. The development of the energy market is shown to play a vital role for the outcome of how different measures would affect global CO2 emissions.

Results from the interviews show that Swedish steel companies regard improved energy efficiency as important. However, the majority of the interviewed energy managers only worked part-time with energy issues and they experienced that lack of time often was a barrier for successful energy management. More efforts could also be put into engaging and educating employees in order to introduce a common practice of improving energy efficiency at the company.

Abstract [sv]

Halterna av växthusgaserna koldioxid (CO2), metan och kväveoxider har under de senaste 800 000 åren aldrig varit högre i atmosfären än vad de är idag. Detta resultat redovisades i IPCCs klimatrapport år 2013. CO2-koncentrationen har ökat med 40 % sedan förindustriell tid och denna ökning beror till största delen på förbränning av fossila bränslen. Ökade koncentrationer av växthusgaser leder till högre global medeltemperatur vilket i sin tur resulterar i klimatförändringar.  För att bromsa klimatförändringarna är det viktigt att vi arbetar för att minska utsläppen av växthusgaser. Industrin står för 20 % av de globala utsläppen av CO2 och järn- och stålindustrin står för 30 % av industrins utsläpp. Järn- och stålindustrin är i dag till stor del beroende av fossila bränslen och el för sin energiförsörjning. Energieffektiviseringsåtgärder och byte av fossila bränslen mot förnybar energi i järn- och stålindustrin skulle kunna bidra till minskade utsläpp av växthusgaser.

Denna avhandling studerar åtgärder för effektivare energianvändning och möjligheter för bränslebyte i järn- och stålindustrin. Avhandlingen fokuserar på återvinning och utnyttjande av överskottsenergier och ersättning av fossila bränslen med biomassa. Energisystemanalys har använts för att undersöka hur förändringar i järn- och stålindustrins energisystem skulle påverka ekonomin och de globala utsläppen av CO2. Avhandlingen studerar också betydelsen av energiledning och nätverkande för att uppnå en effektivare energianvändning. Fokus har här varit på att studera hur energiansvariga resonerar kring varför energieffektiviseringsåtgärder genomförs eller varför de inte genomförs. Djupintervjuer med energiansvariga vid elva svenska stålverk genomfördes för att analysera denna fråga.

För att ge ett exempel på den stora outnyttjade potentialen av överskottsvärme från industrin analyserades potentialen i Gävleborgs län. Möjligheterna att använda överskottsvärmen som fjärrvärme eller för att producera el analyserades. Här visar resultaten att fjärrvärmeproduktionen skulle bli mer än tre gånger så stor som elproduktionen. En ekonomisk utvärdering gjordes där tre tekniker för produktion av el från lågtempererad industriell överskottsvärme jämfördes. Resultaten visar att elproduktion med organisk Rankine-cykel eller en så kallad fasändringsmaterialmotor kan vara lönsam, men att termoelektrisk elproduktion inte är lönsam med dagens teknik och prisnivåer. Det är möjligt att ersätta en del av det fossila kolet i masugnen med träkol och på detta sätt introducera förnybar energi i stålindustrin. Man kan också ersätta gasol som används som bränsle i stålindustrins värmningsugnar med syntesgas eller syntetisk naturgas (SNG) som produceras genom förgasning av biomassa. Under de antaganden som gjorts i avhandlingen skulle det dock inte vara lönsamt för det skrotbaserade stålverk som studerats att ersätta gasolen med bio-SNG. För att uppnå lönsamhet behövs i detta fall ekonomiska styrmedel. Hur olika åtgärder påverkar de globala utsläppen av CO2 beror till stor del på hur framtidens energimarknad ser ut. Elproduktion från industriell överskottsvärme skulle minska de globala CO2-utsläppen i alla scenarier som studerats, men för de andra åtgärderna varierar resultaten beroende på vilka antaganden som gjorts. Resultaten från intervjustudien visar att svensk stålindustri anser att energifrågan är viktig, men det finns fortfarande mycket att göra för att effektivisera energianvändningen i denna sektor. Flera av de intervjuade arbetade bara deltid med energifrågor och de upplevde att tidsbrist hindrade dem från ett effektivt energiledningsarbete. En rekommendation till företagen är därför att anställa en energiansvarig på heltid och/eller fler personer som kan arbeta med energifrågor. Det bör också läggas mer resurser på att engagera och utbilda anställda för att på så sätt introducera en företagskultur som främjar effektiv energianvändning.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 97 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1586
Keyword
iron and steel industry, energy efficiency, CO2 emissions, fuel substitution, fuel switch, excess heat, biomass gasification, bio-syngas, synthetic natural gas, SNG, energy market scenarios, energy management, barriers, driving forces, järn- och stålindustrin, energieffektivisering, CO2-utsläpp, bränslebyte, överskottsvärme, restvärme, förgasning, bio-syntesgas, syntetisk naturgas, SNG, energimarknadsscenarier, energiledning, hinder, drivkrafter
National Category
Energy Systems
Identifiers
urn:nbn:se:liu:diva-105849 (URN)10.3384/diss.diva-105849 (DOI)978-91-7519-367-0 (ISBN)
Public defence
2014-04-29, ACAS, A.huset, Campus Valla, Linköpings universitet, Linköping, 09:40 (Swedish)
Opponent
Supervisors
Funder
Swedish Energy Agency
Available from: 2014-04-11 Created: 2014-04-10 Last updated: 2016-05-04Bibliographically approved
2. System studies of the use of industrial excess heat
Open this publication in new window or tab >>System studies of the use of industrial excess heat
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Energy, materials, and by-products, can be exchanged between companies, having positive effects in the form of improved resource efficiency, environmental benefits, and economic gains. One such energy stream that can be exchanged is excess heat, that is, heat generated as a by-product during, for example, industrial production. Excess heat will continue to play an important role in efforts to reduce greenhouse gas (GHG) emissions and improve energy efficiency. Using excess heat is therefore currently emphasized in EU policy as a way to reach EU climate targets.

This thesis examines the opportunities of manufacturing industries to use industrial excess heat, and how doing so can positively affect industry, society, and the climate. Since different parts of the energy system are entangled, there is an inherent complexity in studying these systems and introducing excess heat in one part of the energy system may influence other parts of the system. This analysis has accordingly been conducted by combining studies from various perspectives, by applying both quantitative and qualitative methods and covering a broad range of aspects, such as technical possibilities as well as climate, policy, economics, and resource aspects.

The results identify several opportunities and benefits accruing from excess heat use. Although excess heat is currently partly used as a thermal resource in district heating in Sweden, this thesis demonstrates that significant untapped excess heat is still available. The mapping conducted in the appended studies identifies excess heat in different energy carriers, mainly low-temperature water. Analysis of excess heat use in different recovery options demonstrated greater output when using excess heat in district heating than electricity production. Optimizing the trade-offs in excess heat used in a district heating network, heat-driven cooling, and electricity production under different energy market conditions while minimizing the system cost, however, indicated that the attractiveness of excess heat in district heating depends on the type of heat production in the system. Viewing excess heat as a low-cost energy source also makes it economically interesting, and creates opportunities to invest in excess heat-recovery solutions. Excess heat is often viewed as CO2 neutral since unused excess heat may be regarded as wasted energy. The GHG mitigation potential of using excess heat, however, was found to be ambiguous. The appended studies demonstrate that using excess heat for electricity production or for applications that reduce the use of electricity reduces GHG emissions. The effects of using excess heat in district heating, on the other hand, depend on the energy market development, for example, the marginal electricity production and marginal use of biomass, and on the type of district heating system replaced. The interviews performed reveal that energy policy does influence excess heat use, being demonstrated both to promote and discourage excess heat use. Beyond national energy policies, internal goals and core values were identified as important for improved energy efficiency and increased excess heat use.

Abstract [sv]

Energi, material och biprodukter kan utbytas mellan företag och därmed leda till positiva effekter i form av förbättrad resurseffektivitet, miljövinster och ekonomiska vinster. Ett sådant energiflöde som kan nyttjas är överskottsvärme, det vill säga, värme som genereras som en biprodukt vid till exempel industriell produktion. Överskottsvärme kommer att fortsätta att spela en viktig roll i arbetet med att minska utsläppen av växthusgaser och öka energieffektiviteten och lyfts därför fram i EU policy som ett sätt att nå klimatmålen.

Denna avhandling undersöker möjligheterna för den tillverkande industrin att använda industriell överskottsvärme och hur detta kan medföra positiva bidrag till industrin, samhället och klimatet. Eftersom olika delar av energisystemet påverkar varandra så finns en inneboende komplexitet i att studera dessa system. Användningen av överskottsvärme i en del av energisystemet kan alltså påverka andra delar av systemet. Denna analys har därför gjorts genom att kombinera studier från olika perspektiv, genom användning av både kvantitativa och kvalitativa metoder och genom att täcka in ett brett spektrum av aspekter såsom tekniska möjligheter, och klimat-, policy-, ekonomiska- och resursaspekter.

Resultaten visar flera möjligheter med, och fördelar som kommer från, användning av överskottsvärme. Även om överskottsvärme redan idag delvis används som värmekälla i fjärrvärme så visar denna avhandling att tillgången på outnyttjad överskottsvärme fortfarande är betydande. Kartläggningen som genomfördes identifierar överskottsvärme i olika energibärare, i huvudsak i vatten med låg temperatur. Användningen av överskottsvärme analyserades för olika användningsalternativ och visade på en större output vid användning i fjärrvärmesystemet än när den användes för elproduktion. När fördelningen av användning av överskottsvärme mellan utnyttjande i fjärrvärmesystemet, för produktion av kyla eller el optimerades under olika energimarknadsvillkor, med syfte att minimera systemkostnaden, visade det sig dock att effekterna från användning av överskottsvärme i fjärrvärme beror på typen av befintlig värmeproduktion i systemet. Om man ser på överskottsvärme som en billig energikälla skapas en ekonomisk möjlighet att investera i olika lösningar för överskottsvärmeanvändning. Överskottsvärme ses ofta som CO2 neutral eftersom outnyttjad överskottsvärme kan ses som bortkastad energi. Möjligheten för minskning av växthusgaser vid användning av överskottsvärme visade sig dock vara tvetydig. Avhandlingens studier visar att användning av överskottsvärme för elproduktion och för tillämpningar som minskar elanvändningen minskar utsläppen av växthusgaser. Effekterna från överskottsvärme i fjärrvärme beror däremot på energimarknadens utveckling, såsom framtida elproduktion och alternativanvändning av biomassa, och på vilken typ av fjärrvärmeproduktion som ersätts. Intervjuerna som utförts visar att styrmedel påverkar överskottsvärmeanvändningen. Styrmedel visade sig både främja och missgynna användningen av överskottsvärme. Utöver nationella styrmedel så lyftes även interna företagsmål och kärnvärden fram som viktiga för ökad energieffektivitet och ökad användning av överskottsvärme.

Place, publisher, year, edition, pages
Linköping: Linköpings Universitet, 2015. 93 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1679
Keyword
excess heat, waste heat, surplus heat, energy systems, greenhouse gas emissions, energy efficiency, energy policy, system studies
National Category
Energy Systems
Identifiers
urn:nbn:se:liu:diva-120500 (URN)10.3384/diss.diva-120500 (DOI)978-91-7519-042-6 (ISBN)
Public defence
2015-09-25, ACAS, Hus A, Campus Valla, Linköping, 10:15 (Swedish)
Opponent
Supervisors
Funder
Swedish Energy Agency
Available from: 2015-09-01 Created: 2015-08-11 Last updated: 2015-09-14Bibliographically approved

Open Access in DiVA

fulltext(513 kB)1021 downloads
File information
File name FULLTEXT01.pdfFile size 513 kBChecksum SHA-512
9e676b9e386a72ab2df32cfa961f1a3ee99e73eeb542aa494d257dab43fe4ce5ae89a6d523b2009ed69516604c45f05b942e4aefd8360f26c0e61a2ad79aabaa
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Broberg Viklund, SarahJohansson, Maria
By organisation
Energy SystemsThe Institute of Technology
In the same journal
Energy Conversion and Management
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 1021 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 748 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf