Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deposition of yttria-stabilized zirconia thin films by high power impulse magnetron sputtering and pulsed magnetron sputtering
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-9126-6004
Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-1744-7322
Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0003-2864-9509
Show others and affiliations
2014 (English)In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 240, 1-6 p.Article in journal (Refereed) Published
Abstract [en]

Yttria-stabilized zirconia (YSZ) thin films were reactively sputter-deposited by high power impulse magnetron sputtering (HiPIMS) and pulsed direct current magnetron sputtering (DCMS). The use of substrate bias voltage was studied in both modes of deposition as a process parameter to promote the growth of dense and less columnar films. Films were deposited on both Si(100) and NiO-YSZ fuel cell anodes. The texture, morphology and composition of the deposited films were investigated with regard to their application as thin electrolytes for solid oxide fuel cells (SOFCs). Independent of the deposition mode the films were found to be stoichiometric. The application of substrate bias voltage had opposite effects on texture and crystallinity of films deposited by pulsed DCMS and HiPIMS. Films deposited by pulsed DCMS became highly crystalline and <220> textured at high bias voltage whereas bias applied to HiPIMS deposited films disrupted crystal growth leading to deterioration of crystallinity. Comparing film morphology, it was found that pulsed DCMS films were columnar and contained voids regardless of the applied substrate bias. When depositing by HiPIMS a window of operation at a bias voltage of -25 V to -50 V was found in which it is possible to deposit non-columnar thin films without voids and cracks as desired for SOFC applications. 

Place, publisher, year, edition, pages
2014. Vol. 240, 1-6 p.
Keyword [en]
HiPIMS, HPPMS, pulsed DCMS, SOFC, YSZ, Substrate bias
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-102516DOI: 10.1016/j.surfcoat.2013.12.001ISI: 000331989900001OAI: oai:DiVA.org:liu-102516DiVA: diva2:678646
Available from: 2013-12-12 Created: 2013-12-12 Last updated: 2017-12-06
In thesis
1. Yttria-Stabilized Zirconia and Gadolinia-Doped Ceria Thin Films for Fuel Cell Applications
Open this publication in new window or tab >>Yttria-Stabilized Zirconia and Gadolinia-Doped Ceria Thin Films for Fuel Cell Applications
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Solid oxide fuel cells convert chemical energy directly into electrical energy with high efficiency and low emission of pollutants. However, before fuel cell technology can gain a significant share of the electrical power market, the operation temperature needs to be reduced in order to decrease costs and improve the durability of the cells. Application of thin film electrolytes and barrier coatings is a way of achieving this goal.

In this thesis, I have investigated film growth and microstructure of yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (CGO) thin films deposited by physical vapor deposition. The aim is to make industrially applicable coatings suitable for application in solid oxide fuel cells (SOFCs). For this purpose, the coatings need to be thin and dense. YSZ coatings were prepared by pulsed direct current (DC) magnetron sputtering and high power impulse magnetron sputtering (HiPIMS) in both laboratory- and industrial-scale setups.

Industrial-scale pulsed DC magnetron sputtering of YSZ showed that homogenous coating over large areas was possible. In order to increase film density of the YSZ, HiPIMS was used. By tuning deposition pressure, peak power density and substrate bias voltage it was possible to deposit noncolumnar thin films without voids and cracks as desired for SOFC applications.

CGO coatings were deposited by pulsed DC magnetron sputtering with the purpose of implementing diffusion barriers to prevent reactions between Sr from the SOFC cathode and the electrolyte. A model system simulating a SOFC was prepared by depositing thin CGO and YSZ layers on cathode material. This setup allowed the study of Sr diffusion by observing SrZrO3 formation using X-ray diffraction while annealing. Electron microscopy was subsequently performed to confirm the results. The study revealed Sr to diffuse along column/grain boundaries in the CGO films but by modifying the film thickness and microstructure the breaking temperature of the barrier could be increased.

CGO thin films were implemented in metal-based SOFC and the influence of film microstructure and thickness on the electrochemical performance of the cell was studied. Cell tests showed that an area specific resistance (ASR) down to 0.27 Ωcm2 could be obtained 650 °C with sputtered CGO barrier layers in combination with a lanthanum strontium cobaltite cathode. In comparison a spin-coated CGO barrier resulted in an ASR value of 0.50 Ωcm2. This shows the high effectiveness of the sputtered barrier in obtaining state-of-the-art performance.

In summary, this work provides fundamental understanding of the deposition and growth of YSZ and CGO thins films and proves the prospective of employing thin film barrier coating in order to obtain high-performing SOFCs.  

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 63 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1564
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-102513 (URN)10.3384/diss.diva-102513 (DOI)978-91-7519-441-7 (ISBN)
Public defence
2014-02-25, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2013-12-12 Created: 2013-12-12 Last updated: 2015-01-13Bibliographically approved

Open Access in DiVA

fulltekst(1118 kB)347 downloads
File information
File name FULLTEXT01.pdfFile size 1118 kBChecksum SHA-512
410644f65b1e22af405dee56a2da4209be7da67b7afafebab351a281392cf81292880140f29d4e5c9f3aa333626b7e8baa19675043d6a606399bb761e5d81674
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Sønderby, SteffenAijaz, AsimHelmersson, UlfSarakinos, KostasEklund, Per
By organisation
Thin Film PhysicsThe Institute of TechnologyPlasma and Coating Physics
In the same journal
Surface & Coatings Technology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 347 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 367 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf