Change search
ReferencesLink to record
Permanent link

Direct link
Interferon alpha inhibits antigen-specific production of proinflammatory cytokines and enhances antigen-specific transforming growth factor beta production in antigen-induced arthritis
Linköping University, Department of Clinical and Experimental Medicine, Division of Inflammation Medicine. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Division of Inflammation Medicine. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Division of Inflammation Medicine. Linköping University, Faculty of Health Sciences.
2013 (English)In: Arthritis Research and Therapy, ISSN 1478-6354, Vol. 15, no 5, R143- p.Article in journal (Refereed) Published
Abstract [en]

Introduction: Interferon alpha (IFN-α) has a complex role in autoimmunity, in that it may both enhance and prevent inflammation. We have previously shown that the presence of IFN-α at sensitization protects against subsequent antigen-triggered arthritis. To understand this tolerogenic mechanism, we performed a descriptive, hypothesis-generating study of cellular and humoral responses associated with IFN-α-mediated protection against arthritis.Methods: Arthritis was evaluated at day 28 in mice given a subcutaneous injection of methylated bovine serum albumin (mBSA), together with Freund adjuvant and 0 to 5,000 U IFN-α at days 1 and 7, followed by intraarticular injection of mBSA alone at day 21. The effect of IFN-α on mBSA-specific IgG1, IgG2a, IgG2b, IgA, and IgE was evaluated by enzyme-linked immunosorbent assay (ELISA). Cytokines in circulation and in ex vivo cultures on mBSA restimulation was evaluated with ELISA and Luminex, and the identity of cytokine-producing cells by fluorescence-activated cell sorting (FACS) analysis.Results: Administration of IFN-α protected mice from arthritis in a dose-dependent manner but had no effect on antigen-specific antibody levels. However, IFN-α did inhibit the initial increase of IL-6, IL-10, IL-12, and TNF, and the recall response induced by intraarticular mBSA challenge of IL-1β, IL-10, IL-12, TNF, IFN-γ, and IL-17 in serum. IFN-α decreased both macrophage and CD4+ T cell-derived IFN-γ production, whereas IL-17 was decreased only in CD4+ T cells. Ex vivo, in mBSA-restimulated spleen and lymph node cell cultures, the inhibitory effect of in vivo administration of IFN-α on proinflammatory cytokine production was clearly apparent, but had a time limit. An earlier macrophage-derived, and stronger activation of the antiinflammatory cytokine transforming growth factor beta (TGF-β) was observed in IFN-α-treated animals, combined with an increase in CD4+ T cells producing TGF-β when arthritis was triggered by mBSA (day 21). Presence of IFN-α at immunizations also prevented the reduction in TGF-β production, which was induced by the intraarticular mBSA injection triggering arthritis in control animals.Conclusions: Administration of IFN-α has a profound effect on the cellular response to mBSA plus adjuvant, but does not affect antigen-specific Ig production. By including IFN-α at immunizations, spleen and lymph node cells inhibit their repertoire of antigen-induced proinflammatory cytokines while enhancing antiinflammatory TGF-β production, first in macrophages, and later also in CD4+ T cells. On intraarticular antigen challenge, this antiinflammatory state is reenforced, manifested as inhibition of proinflammatory recall responses and preservation of TGF-β levels. This may explain why IFN-α protects against antigen-induced arthritis. © 2013 Chalise et al.; licensee BioMed Central Ltd.

Place, publisher, year, edition, pages
London, UK: BioMed Central, 2013. Vol. 15, no 5, R143- p.
National Category
Medical and Health Sciences
URN: urn:nbn:se:liu:diva-102367DOI: 10.1186/ar4326ISI: 000329737400043OAI: diva2:677167
Available from: 2013-12-09 Created: 2013-12-09 Last updated: 2015-11-03Bibliographically approved
In thesis
1. Immune tolerance by interferon-alpha in experimental arthritis
Open this publication in new window or tab >>Immune tolerance by interferon-alpha in experimental arthritis
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Type I Interferons (mainly IFN-α & IFN-β) belong to a family of cytokines that possess strong antiviral and immunomodulatory properties. Pro- and/or anti-inflammatory effects of type I IFN have been observed in infectious diseases and several autoimmune diseases including SLE, MS, RA and experimental models thereof, but what defines either outcome is largely obscure. The main aim of this thesis is to understand how IFN-α may act anti-inflammatory in a model of antigen-induced arthritis (AIA). In this model, mice are sensitised with methylated-BSA (mBSA) emulsified in Freund’s adjuvant at day 1 and 7 followed by intra-articular injection of mBSA in the knee joint at day 21, which induces arthritis within 1 week.

Administration of IFN-α at the time of mBSA sensitisations (day 1 and day 7) but not at induction of arthritis (day 21) clearly protected against arthritis in a type I IFN receptor dependent manner. Humoral immunity might not be involved in this protection as the levels of antigen-specific IgG (total, IgG1, IgG2a and IgG2b), IgA, IgE in serum were not altered in IFN-α treated mice. However, IFN-α-protection was accompanied by delayed and decreased antigen-specific proliferative responses in spleen and lymph node cells ex vivo, including impaired proliferative recall responses after intra-articular antigenic challenge.

In the course of AIA, IFN-α inhibited the increase of circulatory IL-6, IL-10, IL-12, and TNF in the sensitisation phase (day 0-21) and also the re-call response of IL-1β, IL-10, IL-12, TNF, IFN-γ, and IL-17 induced by intra-articular mBSA challenge in arthritis phase (day 21-28). This IFN-α-inhibition of cytokines was also apparent in mBSA-re-stimulated spleen and lymph node cell cultures ex vivo, including inhibited cytokine production in CD4+ T helper cells and macrophages. In contrast to the inhibition of pro-inflammatory cytokines, the levels of immunomodulatory TGF-β was clearly enhanced in IFN-α-treated mice, both in serum and in re-stimulated leucocytes cultures including both macrophages, especially in the sensitisation phase, and in CD4+ T cells in the arthritis phase. By  inhibiting TGF-β signalling in vivo, the protective effect of IFN-α was  shown to be dependent on TGF-β signalling in the sensitisation phase.

The cytokine TGF-β is an activator of the indoleamine 2,3 dioxygnese (IDO1), a potent immuneregulatory component that acts via enzymatic production of kynurenine (Kyn) and signalling activity. The IFN-α-protective effect in AIA was associated with both increased expression and enzymatic activity of IDO1 and the IFN-α-protection was totally ablated in mice lacking IDO1 expression (IDO1 KO mice) and in mice treated with the inhibitor of the enzymatic activity of IDO1 (1-Methyl Tryptophan; 1-MT). Interestingly, administration of the IDO-metabolite Kyn protected mice from AIA in an IFNARindependent manner. These observations show that the IDO1 enzymatic activity is important for the protective effect of IFN-α. Using 1-MT, it was further shown that the enzymatic activity of IDO1 was, like TGF-β, crucial only at the sensitisation but not in the arthritis phase of AIA for IFN-α to protect against arthritis. Instead, IDO1’s non-enzymatic signalling activity, characterized by sustained expression of IDO1 and non-canonical NF-κB activation in pDCs, was observed in the arthritis phase in spleen cells from mice treated with IFN-α.

Regulatory T cells (Treg cells) were also found to be important for IFN-α-protection in AIA. Transient depletion of Treg cells by diphtheria toxin in DEREG mice in the arthritis phase, but not during the sensitisation phase abolished IFN-α-protection. Treatment with IFN-α enhanced the numbers of Treg cells in the course of AIA and their function; compared to untreated mice, Treg cells isolated at day 10 and 20 of AIA from IFN-α- treated mice exhibited higher suppressive activity against mBSA-stimulated proliferation of responder T cells. The enhancing effect of IFN-α on Treg cell numbers was observed in blood, spleen, LNs and also in ex-vivo cultures of leucocytes re-stimulated with mBSA and IFN-α. Although IFN-α clearly increased the suppressive activity of Treg cells, adoptive transfer of Treg cells from mBSA immunized mice, regardless of IFN-α treatment, prevented the development of arthritis.


In the presence of IFN-α during antigen sensitisation, a state of tolerance is established, which is able to prevent joint inflammation induced by antigenic re-challenge. This immunological tolerance is created in the sensitisation phase of AIA and is characterized by inhibition of pro-inflammatory cytokines, increased TGF-β production and activity of the IDO1 enzyme, the latter two being indispensable for IFN-α-induced protection. Administration of Kyn, the metabolite of the enzymatic activity of IDO1, in the sensitisation phase also protected against AIA downstream of type I IFN signalling. In the arthritis phase regulatory T cells, whose numbers and suppressive capacity was clearly enhanced by IFN-α, mediate the actual prevention of arthritis development in IFN-α-treated animals. We have thus identified molecular and cellular components of the anti-inflammatory program elicited by IFN-α including Kyn that may not have the pro-inflammatory effects associated with IFN.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2015. 70 p.
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1495
National Category
Clinical Medicine Pharmacology and Toxicology Rheumatology and Autoimmunity
urn:nbn:se:liu:diva-122463 (URN)10.3384/diss.diva-122463 (DOI)978-91-7685-888-2 (print) (ISBN)
Public defence
2015-12-02, Belladonna, House 511, Campus US, Linköping, 09:00 (English)
Swedish Research CouncilSwedish Rheumatism AssociationMagnus Bergvall FoundationLinköpings universitet
Available from: 2015-11-03 Created: 2015-11-03 Last updated: 2015-11-05Bibliographically approved

Open Access in DiVA

fulltext(1990 kB)157 downloads
File information
File name FULLTEXT01.pdfFile size 1990 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Chalise, Jaya PrakashNarendra, Sudeep ChennaMagnusson, Mattias
By organisation
Division of Inflammation MedicineFaculty of Health SciencesDepartment of Clinical and Experimental Medicine
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 157 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 158 hits
ReferencesLink to record
Permanent link

Direct link