Change search
ReferencesLink to record
Permanent link

Direct link
Program for quantum wave-packet dynamics with time-dependent potentials
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0003-3096-1972
Umeå University, Faculty of Science and Technology, Department of Physics.
Jazan University.
2014 (English)In: Computer Physics Communications, ISSN 0010-4655, E-ISSN 1879-2944, Vol. 185, no 1, 407-414 p.Article in journal (Refereed) Published
Abstract [en]

We present a program to simulate the dynamics of a wave packet interacting with a time-dependent potential. The time-dependent Schrödinger equation is solved on a one-, two-, or three-dimensional spatial grid using the split operator method. The program can be compiled for execution either on a single processor or on a distributed-memory parallel computer.

Place, publisher, year, edition, pages
Elsevier, 2014. Vol. 185, no 1, 407-414 p.
Keyword [en]
Wave-packet dynamics, Time-dependent Schrödinger equation, Ion traps, Laser control
National Category
Other Physics Topics
Research subject
URN: urn:nbn:se:umu:diva-83167DOI: 10.1016/j.cpc.2013.09.012ISI: 000328666100041OAI: diva2:665635
Swedish National Infrastructure for Computing (SNIC), 001/12-202
Available from: 2013-11-20 Created: 2013-11-20 Last updated: 2016-06-01Bibliographically approved
In thesis
1. Numerical simulation of the dynamics of a trapped molecular ion
Open this publication in new window or tab >>Numerical simulation of the dynamics of a trapped molecular ion
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis explores the dynamics of a heteronuclear diatomic molecular ion, possessing a permanent electric dipole moment, µ, which is trapped in a linear Paul trap and can interact with an off-resonance laser field. To build our model we use the rigid-rotor approximation, where the dynamics of the molecular ion are limited to its translational and rotational motions of the center-of-mass. These dynamics are investigated by carrying out suitable numerical calculations.

To introduce our numerical methods, we divide our research topic into two different subjects. First, we ignore the rotational dynamics of the ion by assuming µ = 0. By this assumption, the system resembles an atomic ion, which mainly exhibits translational motion for its center of the mass when exposed to an external trapping field. To study this translational behavior, we implement full-quantum numerical simulations, in which a wave function is attributed to the ion. Finally, we study the quantum dynamics of the mentioned wave packet and we compare our results with those obtained classically.

In the latter case, we keep the permanent dipole moment of the ion and we study the probable effects of the interaction between the dipole moment and the trapping electric field, on both the translational and the rotational dynamics of the trapped molecular ion. In order to study these dynamics, we implement both classical and semi-classical numerical simulations. In the classical method, the rotational and the translational motions of the center of mass of the ion are obtained via classical equations of motion. On the other hand, in the semi-classical method, while the translational motion of the center-of-mass is still obtained classically, the rotation is treated full-quantum mechanically by considering the rotational wave function of the ion. In the semi-classical approach, we mainly study the probable couplings between the rotational states of the molecular ion, due to the interaction of the permanent dipole moment with the trapping electric field. In the end, we also present a semi-classical model, where the trapped molecular ion interacts with an off-resonance laser field.

Place, publisher, year, edition, pages
Umeå: Umeå universitet, 2016. 72 p.
diatomic molecular ion, linear Paul trap, rigid rotor, quantum rotational dynamics, wave-packet dynamics, time-dependent Schrödinger equation, stability
National Category
Atom and Molecular Physics and Optics
urn:nbn:se:umu:diva-118899 (URN)978-91-7601-448-6 (ISBN)
Public defence
2016-04-28, N420, Naturvetarhuset, Umeå University, Umeå, 13:00 (English)
Available from: 2016-04-07 Created: 2016-04-06 Last updated: 2016-04-20Bibliographically approved

Open Access in DiVA

fulltext(267 kB)315 downloads
File information
File name FULLTEXT02.pdfFile size 267 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Dion, ClaudeHashemloo, Avazeh
By organisation
Department of Physics
In the same journal
Computer Physics Communications
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar
Total: 321 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 263 hits
ReferencesLink to record
Permanent link

Direct link