Change search
ReferencesLink to record
Permanent link

Direct link
Reactive Distillation of Biodiesel: Modelling and Optimal Operation
Norwegian University of Science and Technology, Faculty of Natural Sciences and Technology, Department of Chemical Engineering.
2013 (English)MasteroppgaveStudent thesis
Abstract [en]

This thesis modifies an already existing dynamic Matlab Simulink model to correlate with a Hysys model from a similar research. The models are concerned with the reactive distillation for production of biodiesel from linoleic esters of soybean oil through transesterification reactions. The Matlab model was constructed using molar balances, Francis? weir equation for the liquid dynamics, no vapour dynamics, kinetics according to the rate law and temperature estimations according to the UNIQUAC method. Very similar results were presented for the two models besides the Matlab being of simpler origin, and having no inclusion of energy balances compared to the Hysys model. Both a dynamic Simulink and a DAE-system model were produced, with the DAE system having reduced simulation time and an additional steady-state version. The steady-state version of the DAE-model was used for optimisation according to the Skogestad Economic Plantwide Optimisation principles. The first part of the systematic top-down/bottom-up method was applied, focusing on the economic control. Four distinct active constraint regions were identified; varying with the feed flowrate and molar ratio. The first region could not be solved with regard to quality constraints, while the second had maximum flowrate and maximum impurity of total glycerol in the biodiesel product as the active constraints. The third region had active constraints of maximum temperature in the reboiler and maximum impurity of glycerol. The fourth region would not be solved by the Matlab fmincon interior-point algorithm, and applies very high feed ratios outside of the range normally applied by biodiesel production processes.

Place, publisher, year, edition, pages
Institutt for kjemisk prosessteknologi , 2013. , 145 p.
URN: urn:nbn:no:ntnu:diva-23368Local ID: ntnudaim:9779OAI: diva2:661341
Available from: 2013-11-02 Created: 2013-11-02 Last updated: 2013-11-02Bibliographically approved

Open Access in DiVA

fulltext(2199 kB)3090 downloads
File information
File name FULLTEXT01.pdfFile size 2199 kBChecksum SHA-512
Type fulltextMimetype application/pdf
cover(184 kB)10 downloads
File information
File name COVER01.pdfFile size 184 kBChecksum SHA-512
Type coverMimetype application/pdf

By organisation
Department of Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 3090 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 2161 hits
ReferencesLink to record
Permanent link

Direct link