Change search
ReferencesLink to record
Permanent link

Direct link
Life Cycle Assessment of Fuel Choices for Marine Vessels
Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, Department of Electrical Power Engineering.
2013 (English)MasteroppgaveStudent thesis
Abstract [en]

Transporting 80% for the total volume of goods in the world, shipping is currently the backbone of the global economy. The global fleet consists of multiple types of vessels, which delivers various forms of services. As the global economy grows, and the shipping fleet with it, the concern in local and international communities of the environmental impact of shipping has increased. Introduction of alternative fuels as a step towards a more environmental friendly shipping industry has been evaluated. The goal of this study has been to develop and illustrate a life-cycle based approach to evaluate the environmental impact of fuel choice for different marine vessels and their typical operational pattern. The Life Cycle Assessment performed evaluates six fuel choices (heavy fuel oil(HFO), marine diesel oil/marine gas oil (MDO/MGO), liquefied natural gas (LNG), methanol, dimethyl ether (DME) and Fischer-Tropsch diesel) for two types of vessels (RoPax ferry and large container ship). The study assess environmental impacts generated over the life cycle of the different fuels, from the extraction of resources, fuel production and distribution, and the combustion. By using 18 environmental midpoint indicators, the fuel choices have been compared with respect to their environmental performance. The report emphasized the impact indicators Agricultural land occupation potential (ALO), Global warming potential (GWP) and Particulate matter formation potential (PMFP). The results give an ambiguous answer of which fuel has the best environmental performance when used for marine applications. The results for LNG show a drastic reduction in PMFP, but the use of LNG does not change the GWP significantly compared to HFO. In addition, the results show that low sulfur fuels in general provide a clear reduction of PMFP. The potential impact of particulate matter is in large extent caused by the combustion process for all fuel choices. The PMFP generated by biofuels is mainly a result of NOX emissions, while PM and SOX emissions are also important contributors considering conventional fuels. In terms of GWP, the implementation of biofuels shows a clear reduction potential. A substitution of HFO with methanol, DME or FT-diesel results in a reduction of GWP equal to 56%, 80% and 78%. However, the results are found very sensitive to inclusion of emissions related to biomass storage. For fossil fuels, the CO2 emitted along the life cycle is the main contributor of the GWP, while the GWP of biofuels is to a large extent generated by N2O and CH4 in addition to CO2. Increased agricultural land occupation is a consequence of using biofuels. The performed study shows that the environmental impact is to primarily related to the type of feedstock applied in the biofuel production. The results show lower impact for the fuels produced from short-rotation wood, i.e. Dimethyl ether and FT-diesel, compared to forest wood, which was utilized in the methanol production. It is believed that this study provide further insight of which processes and stressors are primarily causing potential impacts to the environment along the life cycle of each fuel. Considering the three impact categories emphasized in this study, Fisher Tropsch-diesel and Dimethyl Ether appear as the most promising fuel alternatives for marine application.

Place, publisher, year, edition, pages
Institutt for energi- og prosessteknikk , 2013. , 124 p.
URN: urn:nbn:no:ntnu:diva-22811Local ID: ntnudaim:10017OAI: diva2:653083
Available from: 2013-10-02 Created: 2013-10-02 Last updated: 2013-10-02Bibliographically approved

Open Access in DiVA

fulltext(8547 kB)3038 downloads
File information
File name FULLTEXT01.pdfFile size 8547 kBChecksum SHA-512
Type fulltextMimetype application/pdf
cover(1398 kB)7 downloads
File information
File name COVER01.pdfFile size 1398 kBChecksum SHA-512
Type coverMimetype application/pdf
attachment(52738 kB)1150 downloads
File information
File name ATTACHMENT01.zipFile size 52738 kBChecksum SHA-512
Type attachmentMimetype application/zip

By organisation
Department of Electrical Power Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 3038 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 136 hits
ReferencesLink to record
Permanent link

Direct link