Change search
ReferencesLink to record
Permanent link

Direct link
Optimization of Combined Cycles for Offshore Oil and Gas Installations
Norwegian University of Science and Technology, Faculty of Engineering Science and Technology, Department of Energy and Process Engineering.
2013 (English)MasteroppgaveStudent thesis
Abstract [en]

With the increasing focus on the greenhouse effect and the introduction of taxation on NOX and CO2 emissions there has been an increased interest in reducing the emissions from the offshore oil and gas installations to bring down the operating costs. This makes the possible use of combined cycles as a source for power production offshore of great immediate interest. Compared to the simple cycle gas turbines typically used offshore today, combined cycles offer a significantly improved thermal efficiency and as such reduced emissions and fuel consumption. However, the large weight and area requirements for combined cycles are a concern; for offshore applications a compact system is needed. This thesis is an extension of the project work Process simulation of combined cycles for offshore applications, written autumn 2012, and focuses on optimizing the design developed in that work. The design parameters for the system developed in the project work were optimized in MATLAB using a connection between MATLAB and a Microsoft Excel spread sheet linked with GT PRO. The thesis includes the development of an objective function and a screening of the potential MATLAB optimization methods. After the optimization methods were decided upon, adjustments were made to them in an attempt to improve the optimized solution, and a brief comparison of the different optimization methods was carried out. Finally, the best solution was compared to that of the project work, both in respect to the individual design parameters and total system performance. Through this thesis it has become apparent that the selection of objective function is of paramount importance, the optimized solution will only be as good as the selected function. In terms of the optimization methods, there were fairly small differences between the various algorithms, though the pattern search with a MADSPositiveBasis2N search algorithm seemed to be a good option for obtaining the best possible solution. In comparison to the design developed in the project work, there were noticeable improvements to be had in terms of power production and weight savings. Overall, the main components of the optimized solution were 493 kg lighter and able to produce an additional 268 kW when compared to the project work, corresponding to a 2.6 % improvement in the value of the selected objective function. This may not sound like much, but the cumulative savings over the lifetime of an installation may become quite significant. Overall it appears to be quite advantageous to optimize the design of combined cycles for offshore oil and gas installations. Once a suitable objective function is established a quite good optimized solution can be realized in relatively short time. It does not appear to be necessary with many adjustments to the optimization parameters, though adjustments can be made if a better solution is sought after.

Place, publisher, year, edition, pages
Institutt for energi- og prosessteknikk , 2013. , 72 p.
URN: urn:nbn:no:ntnu:diva-22771Local ID: ntnudaim:8763OAI: diva2:652813
Available from: 2013-10-01 Created: 2013-10-01 Last updated: 2013-10-01Bibliographically approved

Open Access in DiVA

fulltext(2733 kB)471 downloads
File information
File name FULLTEXT01.pdfFile size 2733 kBChecksum SHA-512
Type fulltextMimetype application/pdf
cover(184 kB)12 downloads
File information
File name COVER01.pdfFile size 184 kBChecksum SHA-512
Type coverMimetype application/pdf
attachment(57 kB)26 downloads
File information
File name ATTACHMENT01.zipFile size 57 kBChecksum SHA-512
Type attachmentMimetype application/zip

By organisation
Department of Energy and Process Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 471 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 318 hits
ReferencesLink to record
Permanent link

Direct link