Change search
ReferencesLink to record
Permanent link

Direct link
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0001-9177-1174
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0002-0441-6893
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0001-8248-6670
2014 (English)In: 27th IEEE International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2014), IEEE conference proceedings, 2014, 96-99 p.Conference paper (Refereed)
Abstract [en]

We report a novel surface-energy patterning phenomenon, in which a novel polymer composition inherits the surface energy of the medium it is in contact with during polymerization. This surface property mimicking process occurs via spontaneous selective molecular alignment of hydrophilic and hydrophobic monomers mixed into an off-stoichiometry thiol-ene (OSTE) formulation. This single-step method for simultaneous structuring and surface energy micropatterning of polymer structures is potentially more robust and lower cost than state-of-the-art processes requiring post-processing surface modification steps. We further demonstrate the self-assembly of a liquid droplet array on the replicated polymer surfaces.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2014. 96-99 p.
, Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), ISSN 1084-6999
Keyword [en]
Surface modification, micropatterning, self-assembly, micro array, OSTE, thiol-ene, polymer, microfluidics, lab-on-chip, oste, OSTE+, OSTEmer, loc
National Category
Nano Technology Textile, Rubber and Polymeric Materials
URN: urn:nbn:se:kth:diva-129520DOI: 10.1109/MEMSYS.2014.6765582ISI: 000352217500025ScopusID: 2-s2.0-84899027092ISBN: 978-147993508-6OAI: diva2:652668
27th IEEE International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2014), San Francisco, CA, USA, 26-30 Jan,2014

QC 20140521

Available from: 2013-10-01 Created: 2013-10-01 Last updated: 2016-04-25Bibliographically approved
In thesis
1. From Macro to Nano: Electrokinetic Transport and Surface Control
Open this publication in new window or tab >>From Macro to Nano: Electrokinetic Transport and Surface Control
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Today, the growing and aging population, and the rise of new global threats on human health puts an increasing demand on the healthcare system and calls for preventive actions. To make existing medical treatments more efficient and widely accessible and to prevent the emergence of new threats such as drug-resistant bacteria, improved diagnostic technologies are needed. Potential solutions to address these medical challenges could come from the development of novel lab-on-chip (LoC) for point-of-care (PoC) diagnostics.

At the same time, the increasing demand for sustainable energy calls for the development of novel approaches for energy conversion and storage systems (ECS), to which micro- and nanotechnologies could also contribute.

This thesis has for objective to contribute to these developments and presents the results of interdisciplinary research at the crossing of three disciplines of physics and engineering: electrokinetic transport in fluids, manufacturing of micro- and nanofluidic systems, and surface control and modification. By combining knowledge from each of these disciplines, novel solutions and functionalities were developed at the macro-, micro- and nanoscale, towards applications in PoC diagnostics and ECS systems.

At the macroscale, electrokinetic transport was applied to the development of a novel PoC sampler for the efficient capture of exhaled breath aerosol onto a microfluidic platform.

At the microscale, several methods for polymer micromanufacturing and surface modification were developed. Using direct photolithography in off-stoichiometry thiol-ene (OSTE) polymers, a novel manufacturing method for mold-free rapid prototyping of microfluidic devices was developed. An investigation of the photolithography of OSTE polymers revealed that a novel photopatterning mechanism arises from the off-stoichiometric polymer formulation. Using photografting on OSTE surfaces, a novel surface modification method was developed for the photopatterning of the surface energy. Finally, a novel method was developed for single-step microstructuring and micropatterning of surface energy, using a molecular self-alignment process resulting in spontaneous mimicking, in the replica, of the surface energy of the mold.

At the nanoscale, several solutions for the study of electrokinetic transport toward selective biofiltration and energy conversion were developed. A novel, comprehensive model was developed for electrostatic gating of the electrokinetic transport in nanofluidics. A novel method for the manufacturing of electrostatically-gated nanofluidic membranes was developed, using atomic layer deposition (ALD) in deep anodic alumina oxide (AAO) nanopores. Finally, a preliminary investigation of the nanopatterning of OSTE polymers was performed for the manufacturing of polymer nanofluidic devices.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. xix, 113 p.
TRITA-EE, ISSN 1653-5146 ; 2014:020Theses in philosophy from the Royal Institute of Technology, ISSN 1650-8831
microsystem, nanosystem, microfluidic, nanofluidic, surface modification, surface property, electrokinetics, model, simulation, material, polymer, thiol-ene, microfabrication, nanofabrication, micromanufacturing, nanomanufacturing, breath sampling, aerosol precipitation, corona discharge, electrostatic precipitation, grafting chemistry, click chemistry, nanopore, nanoporous membrane, photolithography, photopatterning, photografting, microfluidics, nanofluidics, oste, OSTE+, OSTEmer, lab-on-chip, loc, point-of-care, poc, biocompatibility, diagnostics, breath analysis, fuel cell
National Category
Nano Technology Other Electrical Engineering, Electronic Engineering, Information Engineering Textile, Rubber and Polymeric Materials Other Medical Engineering Polymer Technologies
Research subject
Electrical Engineering; Materials Science and Engineering; Physics; Medical Technology
urn:nbn:se:kth:diva-144994 (URN)978-91-7595-119-5 (ISBN)
Public defence
2014-05-23, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
Swedish Research CouncilEU, European Research Council

QC 20140509

Available from: 2014-05-09 Created: 2014-05-05 Last updated: 2014-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopusIEEEXplore

Search in DiVA

By author/editor
Pardon, GaspardHaraldsson, Tommyvan der Wijngaart, Wouter
By organisation
Micro and Nanosystems
Nano TechnologyTextile, Rubber and Polymeric Materials

Search outside of DiVA

GoogleGoogle ScholarTotal: 54 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 515 hits
ReferencesLink to record
Permanent link

Direct link