Change search
ReferencesLink to record
Permanent link

Direct link
Boundary Conditions for 3D Fluid-Structure Interaction Simulations of Compliant Vessels
Norwegian University of Science and Technology, Faculty of Engineering Science and Technology, Department of Structural Engineering.
2013 (English)MasteroppgaveStudent thesis
Abstract [en]

The goal of this study was to investigate different outlet boundary conditions for a straight compliant tube, by the means of fluid-structure interaction simulations. In addition to investigating boundary conditions it was desirable to see how different parameters, like time step, grid refinement and CFL-number would influence the results. Simulations were run with different time steps and grids. Changing these parameters had only minor influence on the results of the simulations, except for very small time steps, when the simulations would not converge. Four different boundary conditions were tested at the outlet: A reflection free boundary, an imposed reflection factor of 0.9, a two-element Windkessel model and a three-element Windkessel model. The reflection free model gave almost no reflections, while the simulation with a reflection factor of 0.9 gave the imposed amount of reflections at the outlet. For the reflection free case, comparing the results with simpler, analytical solutions gave poor accuracy, because the assumption of Poiseuille flow was invalid. Changing the velocity profile at the inlet from uniform to parabolic improved the accuracy. The two-element Windkessel model was not able to model a reflection free outlet. Reflections would occur even when the parameters were chosen to give a theoretically reflection free outlet. This was improved by using the three-element Windkessel model. When choosing parameters that would theoretically give zero reflections, the amount of reflections was very low.

Place, publisher, year, edition, pages
Institutt for konstruksjonsteknikk , 2013. , 72 p.
URN: urn:nbn:no:ntnu:diva-22739Local ID: ntnudaim:9152OAI: diva2:652008
Available from: 2013-09-28 Created: 2013-09-28 Last updated: 2013-09-28Bibliographically approved

Open Access in DiVA

fulltext(4115 kB)1333 downloads
File information
File name FULLTEXT01.pdfFile size 4115 kBChecksum SHA-512
Type fulltextMimetype application/pdf
cover(184 kB)24 downloads
File information
File name COVER01.pdfFile size 184 kBChecksum SHA-512
Type coverMimetype application/pdf

By organisation
Department of Structural Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 1333 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 100 hits
ReferencesLink to record
Permanent link

Direct link