Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Large-scale time parallelization for molecular dynamics problems
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.
2013 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Storskalig tidsparallellisering för molekyldynamik (Swedish)
Abstract [en]

As modern supercomputers draw their power from the sheer number of cores, an efficient parallelization of programs is crucial for achieving good performance. When one tries to solve differential equations in parallel this is usually done by parallelizing the computation of one single time step. As the speedup of such parallelization schemes is usually limited, e.g. by the spatial size of the problem, additional parallelization in time may be useful to achieve better scalability.

This thesis will introduce two well-known schemes for time-parallelization, namely the waveform relaxation method and the parareal algorithm. These methods are then applied to a molecular dynamics problem which is a useful test example as the number of required time steps is high while the number of unknowns is relatively low. Afterwards it is investigated how these methods can be adapted to large-scale computations.

Abstract [sv]

Moderna superdatorer använder ett stort antal processorer för att uppnå hög prestanda. Därför är det nödvändigt att parallellisera sina program på ett effektivt sätt. När man löser differentialekvationer så brukar man parallellisera beräkningen av en enda tidspunkt. Speedupen av sådana program är ofta begränsad, till exempel av problemets storlek. Genom att använda ytterligare parallellisering i tid kan man uppnå bättre skalbarhet.

Denna avhandling presenterar två välkända algoritmer för tidsparallellisering: waveform relaxation och parareal. Dessa metoder används för att lösa ett molekyldynamikproblem där tidsdomänen är stor jämförd med antalet obekanta. Slutligen undersöks några förbättringar för att möjliggöra storskaliga beräkningar.

Place, publisher, year, edition, pages
2013. , 72 p.
Series
TRITA-MAT-E, 2013:44
National Category
Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-129301OAI: oai:DiVA.org:kth-129301DiVA: diva2:651381
Subject / course
Scientific Computing
Educational program
Master of Science - Scientific Computing
Supervisors
Examiners
Available from: 2013-09-25 Created: 2013-09-25 Last updated: 2013-09-25Bibliographically approved

Open Access in DiVA

fulltext(1678 kB)235 downloads
File information
File name FULLTEXT01.pdfFile size 1678 kBChecksum SHA-512
dfa5489e31b781530c0022fe8d84ad5132b0a76fbdfe9e235dc7ea5b64bb72d65fbf0fa2f08fdf0fb73617887cfc80c3979fc50401835be61070bfa155cfca53
Type fulltextMimetype application/pdf

By organisation
Numerical Analysis, NA
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 235 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 232 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf