Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sequencing of the core MHC region of black grouse (Tetrao tetrix) and comparative genomics of the galliform MHC
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Population and Conservation Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Population and Conservation Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Population and Conservation Biology.
Show others and affiliations
2012 (English)In: BMC Genomics, ISSN 1471-2164, E-ISSN 1471-2164, Vol. 13, 553- p.Article in journal (Refereed) Published
Abstract [en]

BACKGROUND:The MHC, which is regarded as the most polymorphic region in the genomes of jawed vertebrates, plays a central role in the immune system by encoding various proteins involved in the immune response. The chicken MHC-B genomic region has a highly streamlined gene content compared to mammalian MHCs. Its core region includes genes encoding Class I and Class IIB molecules but is only ~92Kb in length. Sequences of other galliform MHCs show varying degrees of similarity as that of chicken. The black grouse (Tetrao tetrix) is a wild galliform bird species which is an important model in conservation genetics and ecology. We sequenced the black grouse core MHC-B region and combined this with available data from related species (chicken, turkey, gold pheasant and quail) to perform a comparative genomics study of the galliform MHC. This kind of analysis has previously been severely hampered by the lack of genomic information on avian MHC regions, and the galliformes is still the only bird lineage where such a comparison is possible.RESULTS:In this study, we present the complete genomic sequence of the MHC-B locus of black grouse, which is 88,390 bp long and contains 19 genes. It shows the same simplicity as, and almost perfect synteny with, the corresponding genomic region of chicken. We also use 454-transcriptome sequencing to verify expression in 17 of the black grouse MHC-B genes. Multiple sequence inversions of the TAPBP gene and TAP1-TAP2 gene block identify the recombination breakpoints near the BF and BLB genes. Some of the genes in the galliform MHC-B region also seem to have been affected by selective forces, as inferred from deviating phylogenetic signals and elevated rates of non-synonymous nucleotide substitutions.CONCLUSIONS:We conclude that there is large synteny between the MHC-B region of the black grouse and that of other galliform birds, but that some duplications and rearrangements have occurred within this lineage. The MHC-B sequence reported here will provide a valuable resource for future studies on the evolution of the avian MHC genes and on links between immunogenetics and ecology of black grouse.

Place, publisher, year, edition, pages
2012. Vol. 13, 553- p.
National Category
Genetics
Identifiers
URN: urn:nbn:se:uu:diva-206871DOI: 10.1186/1471-2164-13-553OAI: oai:DiVA.org:uu-206871DiVA: diva2:645785
Available from: 2013-09-05 Created: 2013-09-05 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

fulltext(481 kB)