Change search
ReferencesLink to record
Permanent link

Direct link
A Comparative study of the bonding energy in adhesive wafer bonding
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0002-9820-8728
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0002-0441-6893
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
Show others and affiliations
2013 (English)In: Journal of Micromechanics and Microengineering, ISSN 0960-1317, E-ISSN 1361-6439, Vol. 23, no 8, 1-7 p.Article in journal (Refereed) Published
Abstract [en]

Adhesion energies are determined for three different polymers currently used in adhesive wafer bonding of silicon wafers. The adhesion energies of the polymer off-stoichiometry thiol-ene-epoxy OSTE+ and the nano-imprint resist mr-I 9150XP are determined. The results are compared to the adhesion energies of wafers bonded with benzocyclobutene, both with and without adhesion promoter. The adhesion energies of the bonds are studied by blister tests, consisting of delaminating silicon lids bonded to silicon dies with etched circular cavities, using compressed nitrogen gas. The critical pressure needed for delamination is converted into an estimate of the bond adhesion energy. The fabrication of test dies and the evaluation method are described in detail. The mean bond energies of OSTE+ were determined to be 2.1 and 20 J m(-2) depending on the choice of the epoxy used. A mean bond energy of 1.5 J m(-2) was measured for mr-I 9150XP.

Place, publisher, year, edition, pages
2013. Vol. 23, no 8, 1-7 p.
Keyword [en]
Microfluidic Devices, SU-8, Benzocyclobutene, Level, BCB, wafer bonding, heterogeneous integration
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Nano Technology
URN: urn:nbn:se:kth:diva-127487DOI: 10.1088/0960-1317/23/8/085019ISI: 000322221100021ScopusID: 2-s2.0-84881171360OAI: diva2:644705
EU, European Research Council, MM 277879

QC 20130902

Available from: 2013-09-02 Created: 2013-08-30 Last updated: 2015-06-26Bibliographically approved
In thesis
1. Heterogeneous material integration for MEMS
Open this publication in new window or tab >>Heterogeneous material integration for MEMS
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis describes heterogeneous integration methods for the fabrication of microelectromechanical systems (MEMS). Most MEMS devices reuse the fabrication techniques that are found in the microelectronics integrated circuit industry. This limits the selection of materials and processes that are feasible for the realization of MEMS devices. Heterogeneous integration methods, on the other hand, consist of the separate pre-fabrication of sub-components followed by an assembly step. The pre-fabrication of subcomponents opens up for a wider selection of fabrication technologies and thus potentially better performing and more optimized devices. The first part of the thesis is focused upon an adhesive wafer-level layer transfer method to fabricate resistive microbolometer-based long-wavelength infrared focal plane arrays. This is realized by a CMOS-compatible transfer of monocrystalline silicon with epitaxially grown silicon-germanium quantum wells. Heterogeneous transfer methods are also used for the realization of filtering devices, integration of distributed small dies onto larger wafer formats and to fabricate a graphene-based pressure sensor. The filtering devices consist of very fragile nano-porous membranes that with the presented dry adhesive methods can be transferred without clogging or breaking. Pick-and-place methods for the massive transfer of small dies between different wafer formats are limited by time and die size-considerations. Our presented solution solves these problems by expanding a die array on a flexible tape, followed by adhesive wafer bonding to a target wafer. Furthermore, a gauge pressure sensor is realized by transferring a graphene monolayer grown on a copper foil to a micromachined target wafer with a silicon oxide interface layer. This device is used to extract the gauge factor of graphene. Adhesive bonding is an enabling technology for the presented heterogeneous integration techniques. A blister test method together with an experimental setup to characterize the bond energies between adhesives and bonded substrates is also presented.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. xii, 87 p.
Trita-EE, ISSN 1653-5146 ; 2013:039
National Category
Engineering and Technology
urn:nbn:se:kth:diva-129185 (URN)
Public defence
2013-10-25, Kollegiesalen, Brinellvägen 8, KTH, Stockholm, 10:00 (English)

QC 20131003

Available from: 2013-10-03 Created: 2013-09-22 Last updated: 2013-10-04Bibliographically approved

Open Access in DiVA

fulltext(2636 kB)58 downloads
File information
File name FULLTEXT02.pdfFile size 2636 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Forsberg, FredrikSaharil, FarizahHaraldsson, TommyRoxhed, NiclasStemme, Göranvan der Wijngaart, WouterNiklaus, Frank
By organisation
Micro and Nanosystems
In the same journal
Journal of Micromechanics and Microengineering
Electrical Engineering, Electronic Engineering, Information EngineeringNano Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 62 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 250 hits
ReferencesLink to record
Permanent link

Direct link