Change search
ReferencesLink to record
Permanent link

Direct link
Indications of nitrogen-limited methane uptake in tropical forest soils
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
2013 (English)In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 10, no 8, 5367-5379 p.Article in journal (Refereed) Published
Abstract [en]

Abstract: It is estimated that tropical forest soils contribute 6.2 Tg yr(-1) (28 %) to global methane (CH4) uptake, which is large enough to alter CH4 accumulation in the atmosphere if significant changes would occur to this sink. Elevated deposition of inorganic nitrogen (N) to temperate forest ecosystems has been shown to reduce CH4 uptake in forest soils, but almost no information exists from tropical forest soils even though projections show that N deposition will increase substantially in tropical regions. Here we report the results from two long-term, ecosystem-scale experiments in which we assessed the impact of chronic N addition on soil CH4 fluxes from two old-growth forests in Panama: (1) a lowland, moist (2.7 m yr(-1) rainfall) forest on clayey Cambisol and Nitisol soils with controls and N-addition plots for 9-12yr, and (2) a montane, wet (5.5 m yr(-1) rainfall) forest on a sandy loam Andosol soil with controls and N-addition plots for 1-4 yr. We measured soil CH4 fluxes for 4 yr (2006-2009) in four replicate plots (40 m x 40 m each) per treatment using vented static chambers (four chambers per plot). CH4 fluxes from the lowland control plots and the montane control plots did not differ from their respective N-addition plots. In the lowland forest, chronic N addition did not lead to inhibition of CH4 uptake; instead, a negative correlation of CH4 fluxes with nitrate (NO3-) concentrations in the mineral soil suggests that increased NO3- levels in N-addition plots had stimulated CH4 consumption and/or reduced CH4 production. In the montane forest, chronic N addition also showed negative correlation of CH4 fluxes with ammonium concentrations in the organic layer, which suggests that CH4 consumption was N limited. We propose the following reasons why such N-stimulated CH4 consumption did not lead to statistically significant CH4 uptake: (1) for the lowland forest, this was caused by limitation of CH4 diffusion from the atmosphere into the clayey soils, particularly during the wet season, as indicated by the strong positive correlations between CH4 fluxes and water-filled pore space (WFPS); (2) for the montane forest, this was caused by the high WFPS in the mineral soil throughout the year, which may not only limit CH4 diffusion from the atmosphere into the soil but also favour CH4 production; and (3) both forest soils showed large spatial and temporal variations of CH4 fluxes. We conclude that in these extremely different tropical forest ecosystems there were indications of N limitation on CH4 uptake. Based on these findings, it is unlikely that elevated N deposition on tropical forest soils will lead to a rapid reduction of CH4 uptake.

Place, publisher, year, edition, pages
2013. Vol. 10, no 8, 5367-5379 p.
National Category
Environmental Sciences
URN: urn:nbn:se:uu:diva-205109DOI: 10.5194/bg-10-5367-2013ISI: 000323980300008OAI: diva2:640569
Available from: 2013-08-14 Created: 2013-08-14 Last updated: 2015-03-23Bibliographically approved

Open Access in DiVA

Veldkamp et al 2013(1386 kB)200 downloads
File information
File name FULLTEXT01.pdfFile size 1386 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Koehler, Birgit
By organisation
In the same journal
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 200 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 278 hits
ReferencesLink to record
Permanent link

Direct link