References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Boundary estimates for non-negative solutions to non-linear parabolic equationsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2015 (English)In: Calculus of Variations and Partial Differential Equations, ISSN 0944-2669, E-ISSN 1432-0835, Vol. 54, no 1, 847-879 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2015. Vol. 54, no 1, 847-879 p.
##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:uu:diva-204871DOI: 10.1007/s00526-014-0808-8ISI: 000359941200033OAI: oai:DiVA.org:uu-204871DiVA: diva2:639989
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2013-08-12 Created: 2013-08-12 Last updated: 2016-07-20Bibliographically approved

This paper is mainly devoted to the boundary behavior of non-negative solutions to the equation\[\H u =\partial_tu-\nabla\cdot \operatorname{A}(x,t,\nabla u) = 0\]in domains of the form $\Omega_T=\Omega\times (0,T)$ where $\Omega\subset\mathbb R^n$ is a bounded non-tangentially accessible (NTA) domain and $T>0$. The assumptions we impose on$A$ imply that $H$ is a non-linear parabolic operator with linear growth. Our main results include a backward Harnackinequality, and the H\"older continuity up to the boundary of quotients of non-negative solutions vanishing on the lateral boundary. Furthermore, to each such solution one can associate a natural Riesz measure supported on the lateral boundary and one of our main result is a proof of the doubling property for this measure. Our results generalize, to the setting of non-linear equations with linear growth, previous results concerningthe boundary behaviour, in Lipschitz cylinders and time-independent NTA-cylinders, established for non-negative solutions to equations of the type $\partial_tu-\nabla\cdot (\operatorname{A}(x,t)\nabla u)=0$, where $A$ is a measurable, bounded and uniformly positive definite matrix-valued function. In the latter case the measure referred to above is essentially the caloric or parabolic measure associated to the operator and related to Green's function. At the end of the paper we also remark that our arguments are general enough to allow us to generalize parts of our results to general fully non-linear parabolic partial differential equations of second order.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1088",{id:"formSmash:lower:j_idt1088",widgetVar:"widget_formSmash_lower_j_idt1088",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1089_j_idt1091",{id:"formSmash:lower:j_idt1089:j_idt1091",widgetVar:"widget_formSmash_lower_j_idt1089_j_idt1091",target:"formSmash:lower:j_idt1089:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});