Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A polymer neural probe with tunable flexibility
Lund University. (NeuroNano Research Centre)
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0001-9651-4900
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0002-0441-6893
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0001-8248-6670
Show others and affiliations
2013 (English)In: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), 2013, p. 691-694Conference paper, Published paper (Refereed)
Abstract [en]

A novel polymeric material, off stoichiometry thiol-ene-epoxy (OSTE+), has been evaluated for the fabrication of neural implants. OSTE+ is easily photo-structurable and exhibits mechanical properties suitable for stable implantation of the probe into brain tissue, while being sufficiently soft at physiological temperatures to reduce living tissue damage. The facile processing of OSTE+ allows use in applications where SU-8 or polyimide currently are the materials of choice. Uniquely, OSTE+ has a Young’s modulus of 1.9 GPa at 10 °C decreasing almost two orders of magnitude to 30 MPa at 40 °C, which can be compared to the Young’s modulus of 2.1 GPa for SU-8. We show a probe, with nine gold electrode sites, implanted into 0.5% agar at 40 °C using active cooling during the implantation.

Place, publisher, year, edition, pages
2013. p. 691-694
Series
International IEEE/EMBS Conference on Neural Engineering, ISSN 1948-3546
Keywords [en]
Implantable neural probes, Biocompatibility, Thiol-ene-epoxy, OSTE+
National Category
Medical Engineering Materials Engineering Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-125010DOI: 10.1109/NER.2013.6696028Scopus ID: 2-s2.0-84897675358ISBN: 978-1-4673-1969-0 (print)OAI: oai:DiVA.org:kth-125010DiVA, id: diva2:638764
Conference
2013 6th International IEEE/EMBS Conference on Neural Engineering (NER); San Diego, CA, USA, 6-8 November 2013
Note

QC 20140214

Available from: 2013-08-02 Created: 2013-08-02 Last updated: 2017-10-02Bibliographically approved
In thesis
1. Thiol-ene and Thiol-ene-epoxy Based Polymers for Biomedical Microdevices
Open this publication in new window or tab >>Thiol-ene and Thiol-ene-epoxy Based Polymers for Biomedical Microdevices
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Within healthcare there is a market pull for biomedical devices that can rapidly perform laboratory processes, such as diagnostic testing, in a hand-held format. For this reason, biomedical devices must become smaller, more sophisticated, and easier to use for a reasonable cost. However, despite the accelerating academic research on biomedical microdevices, and especially plastic-based microfluidic chips, there is still a gap between the inventions in academia and their benefit to society. To bridge this gap there is a need for new materials which both exhibit similar properties as industrial thermoplastics, and that enable rapid prototyping in academia.

In this thesis, thiol-ene and thiol-ene-epoxy thermosets are evaluated both in terms of their suitability for rapid prototyping of biomedical microdevices and their potential for industrial manufacturing of “lab-on-chips”.

The first part of the thesis focuses on material development of thiol-ene and thiol-ene-epoxy thermosets. Chemical and mechanical properties are studied, as well as in vitro biocompatibility with cells.

The second part of the thesis focuses on microfabrication methods for both thermosets. This includes reaction injection molding, photostructuring, and surface modification. It is demonstrated how thiol-ene and thiol-ene-epoxy both provide advantageous thermo-mechanical properties and versatile surface modifications via “thiol-click chemistry”.

In the end of the thesis, two applications for both polymer platforms are demonstrated. Firstly, thiol-ene is used for constructing nanoliter well arrays for liquid storage and on-demand electrochemical release. Secondly, thiol-ene-epoxy is used to enhance the biocompatibility of neural probes by tuning their flexibility.

It is concluded that both thiol-ene and thiol-ene-epoxy thermosets exhibit several properties that are highly suitable for rapid prototyping as well as for scalable manufacturing of biomedical microdevices.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2017. p. 93
Series
TRITA-EE, ISSN 1653-5146 ; 2017:129
Keywords
biomedical microdevices, lab-on-a-chip, off-stoichiometry thiol-ene, OSTE, thiol-ene-epoxy, hybrid polymer networks, reaction injection molding, photostructuring, surface modification, bonding, liquid encapsulation, biocompatibility
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Medical Engineering Medical Biotechnology Materials Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-215110 (URN)978-91-7729-530-3 (ISBN)
Public defence
2017-11-13, F3, Lindstedtsvägen 26, Stockholm, 10:15 (English)
Opponent
Supervisors
Funder
EU, European Research CouncilEU, FP7, Seventh Framework Programme
Note

QC 20171003

Available from: 2017-10-03 Created: 2017-10-02 Last updated: 2017-10-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopusPublished version

Search in DiVA

By author/editor
Vastesson, AlexanderHaraldsson, Tommyvan der Wijngaart, Wouter
By organisation
Micro and Nanosystems
Medical EngineeringMaterials EngineeringElectrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 368 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf