Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Schrodinger-type propagators, pseudodifferential operators and modulation spaces
University of Turin.
Politecnico di Torino.
Università di Torino.
2013 (English)In: Journal of the London Mathematical Society, ISSN 0024-6107, E-ISSN 1469-7750, Vol. 88, p. 375-395Article in journal (Refereed) Published
Abstract [en]

We prove continuity results for Fourier integral operators with symbols in modulation spaces, acting between modulation spaces. The phase functions belong to a class of non-degenerate generalized quadratic forms that includes Schrödinger propagators and pseudodifferential operators. As a byproduct, we obtain a characterization of all exponents p, q, r1, r2, t1, t2∈[1, ∞] of modulation spaces such that a symbol in Mp, q(ℝ2d) gives a pseudodifferential operator that is continuous from Mr1,r2(ℝd) into Mt1,t2(ℝd).

Place, publisher, year, edition, pages
London: London Mathematical Society, 2013. Vol. 88, p. 375-395
National Category
Mathematical Analysis
Research subject
Mathematics, Mathematics
Identifiers
URN: urn:nbn:se:lnu:diva-27694DOI: 10.1112/jlms/jdt020OAI: oai:DiVA.org:lnu-27694DiVA, id: diva2:638304
Available from: 2013-07-29 Created: 2013-07-29 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Wahlberg, Patrik
In the same journal
Journal of the London Mathematical Society
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 105 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf