Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of particles size and surface modification on thermal conductivity and viscosity of alumina nanofluids
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.ORCID iD: 0000-0001-5380-975X
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.ORCID iD: 0000-0001-5678-5298
Show others and affiliations
2013 (English)Conference paper, Poster (with or without abstract) (Refereed)
Abstract [en]

Electronics industry growing faster and it demands ultrahigh performance cooling systems to manage the heat loses in terms of energy and money. Conventional cooling fluids are approaching to its limit due to the poor thermal transport performance and a new era for the heat transfer fluids had been initiated about two decades ago. When nanoparticles dispersed in conventional heat transfer fluid (like water, oil, glycols), the mixture is called as nanofluids. Alumina suspensions are well known class of nanofluids, which have been investigated in many recent studies to determine the non-classical behavior of the suspensions. The aim of this study is to investigate optimized particle size and suitable surface modification for the improved dispersion properties of nanofluids with enhanced thermal performance and low viscosity. We have utilized two different types of alumina crystal phases; one is Boehmite (γ-AlOOH) and clay type (α -Al2O3) and the nanofluids were prepare d by suspending different size of nanoparticles in water and water/ethylene glycol (EG) mixtures. Dynamic light scattering (DLS) was used to determine the agglomerate size and scanning electron microscope (SEM) used to study the particle size and morphology. Zeta potential was measured to determine the electrostatic stability for the dispersed nanoparticles. Thermal conductivity was estimated by using KD2 Pro setup and up to 10 % enhancement in TC was observed as compared to the base fluid. Viscosity was measured by capillary viscometer, which shows the significant effect from the addition of additives and surfactants. Possible mechanisms contributing in reducing the viscosity and increasing the thermal conductivity are described in details.

Place, publisher, year, edition, pages
2013.
Keywords [en]
Alumina, Nanofluids, Thermal conductivity, Viscosity
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:kth:diva-124189OAI: oai:DiVA.org:kth-124189DiVA, id: diva2:633624
Conference
European Materials Research Conference E-MRS; Strasbourg, France, May 27-31, 2013
Note

QC 20140626

Available from: 2013-06-27 Created: 2013-06-27 Last updated: 2014-06-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Saleemi, MohsinNikkam, NaderGhadami Yazdi, MiladToprak, MuhammetMuhammed, Mamoun
By organisation
Functional Materials, FNM
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 124 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf