Change search
ReferencesLink to record
Permanent link

Direct link
Molecular diversity and population structure at the Cytochrome P450 3A5 gene in Africa
Show others and affiliations
2013 (English)In: BMC Genetics, ISSN 1471-2156, Vol. 14, 34- p.Article in journal (Refereed) Published
Abstract [en]

Background: Cytochrome P450 3A5 (CYP3A5) is an enzyme involved in the metabolism of many therapeutic drugs. CYP3A5 expression levels vary between individuals and populations, and this contributes to adverse clinical outcomes. Variable expression is largely attributed to four alleles, CYP3A5*1 (expresser allele); CYP3A5*3 (rs776746), CYP3A5*6 (rs10264272) and CYP3A5*7 (rs41303343) (low/non-expresser alleles). Little is known about CYP3A5 variability in Africa, a region with considerable genetic diversity. Here we used a multi-disciplinary approach to characterize CYP3A5 variation in geographically and ethnically diverse populations from in and around Africa, and infer the evolutionary processes that have shaped patterns of diversity in this gene. We genotyped 2538 individuals from 36 diverse populations in and around Africa for common low/non-expresser CYP3A5 alleles, and re-sequenced the CYP3A5 gene in five Ethiopian ethnic groups. We estimated the ages of low/non-expresser CYP3A5 alleles using a linked microsatellite and assuming a step-wise mutation model of evolution. Finally, we examined a hypothesis that CYP3A5 is important in salt retention adaptation by performing correlations with ecological data relating to aridity for the present day, 10,000 and 50,000 years ago. Results: We estimate that similar to 43% of individuals within our African dataset express CYP3A5, which is lower than previous independent estimates for the region. We found significant intra-African variability in CYP3A5 expression phenotypes. Within Africa the highest frequencies of high-activity alleles were observed in equatorial and Niger-Congo speaking populations. Ethiopian allele frequencies were intermediate between those of other sub-Saharan African and non-African groups. Re-sequencing of CYP3A5 identified few additional variants likely to affect CYP3A5 expression. We estimate the ages of CYP3A5*3 as similar to 76,400 years and CYP3A5*6 as similar to 218,400 years. Finally we report that global CYP3A5 expression levels correlated significantly with aridity measures for 10,000 [Spearmann's Rho= -0.465, p=0.004] and 50,000 years ago [Spearmann's Rho= -0.379, p=0.02]. Conclusions: Significant intra-African diversity at the CYP3A5 gene is likely to contribute to multiple pharmacogenetic profiles across the continent. Significant correlations between CYP3A5 expression phenotypes and aridity data are consistent with a hypothesis that the enzyme is important in salt-retention adaptation.

Place, publisher, year, edition, pages
2013. Vol. 14, 34- p.
Keyword [en]
Cytochrome P450 3A5, Africa, Population genetics, Gene-environment correlations, Pharmacogenetics
National Category
Natural Sciences
URN: urn:nbn:se:uu:diva-202373DOI: 10.1186/1471-2156-14-34ISI: 000319113500001OAI: diva2:631914
Available from: 2013-06-24 Created: 2013-06-24 Last updated: 2013-06-24Bibliographically approved

Open Access in DiVA

fulltext(1456 kB)46 downloads
File information
File name FULLTEXT01.pdfFile size 1456 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text
By organisation
Evolutionary Biology
In the same journal
BMC Genetics
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 46 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 237 hits
ReferencesLink to record
Permanent link

Direct link