Change search
ReferencesLink to record
Permanent link

Direct link
Task Programming of Redundant Industrial Robots: A Virtually Extended Null Space Formulation Verified Through Obstacle Avoidance
Norwegian University of Science and Technology, Faculty of Engineering Science and Technology, Department of Productions and Quality Engineering.
2012 (English)MasteroppgaveStudent thesis
Abstract [en]

Industrial robots are an important part of modern automation and are used in a variety of applications such as handling, welding, painting and assembling. They have normally six degrees of freedom to provide an arbitrary location of the tool inside its working space. However, during the last years, there have been developed industrial robots with more than six axes, thus redundant robots. This gives extra functionality to avoid singular positions, to move around obstacles and to optimize the use of energy during a predefined trajectory, by changing the internal configuration of the robot arm while still maintaining the tool's location. However, programming of redundant robots is complicated and time consuming due to the fact that both the tool location and the internal configuration of the robot arm have to be programmed. Investigations on the use of redundant industrial robots in the industry reveal several advantages including highly increased flexibility and a significant reduction of space need. The flexibility can be attributed through obstacle avoidance, singularity avoidance and energy optimization. For small and medium enterprises (SMEs) and in High-mix Low-volume productions, this gives a great advantage in even more competitive markets. This thesis presents an efficient approach for programming of redundant industrial robots. The system uses proximity sensors mounted on the robot arm to detect obstacles. By analyzing the sensor data, the system can automatically reconfigure the robot's arm to automatically, comply with environmental constraints. Enabling this functionality by an automatic system, simplified the programming of the redundant robot to be similar to a normal six-axes robot. Studies into the subjects that constitute the theoretical basis for the practical implementation and kinematic resolutions have been done. This includes, among others, kinematic analysis, redundancy resolutions, task formulation and methods for obstacle detection. The studies led to a suggestion for an task description scheme based on an extension of Mason's task formulation for force controlled tasks. The formulation augments the robots self-motion ability to be based upon a virtual extension of the robot's Null space. The virtual extension allows the operator to select the priority of the secondary task, subsequently programming the robot as if it were a six-axis robot. The system has been implemented and experimentally verified on a NACHI MR20 seven-axes industrial robot. The implemented system includes Cartesian velocity limiter, Joint space velocity limiter, Task Reconstruction algorithm, Default arm reconfiguration and path correction algorithm. The sensors system is based on ultrasonic and infrared proximity sensors, covering the greater part of the robot arm. The experiments proved convincing performance and robustness of the implemented system. It was shown that the extended null space formulation can redistribute certain axes from the primary task to the secondary task, and thus, provide automatic obstacle avoidance. The obstacle avoidance strategy was shown to be successful, and gave the desired evasive maneuver. Experiments also demonstrated the system’s ability to reconfigure the primary task after deflection caused by the secondary task and the ability to reconfigure the arm to a default configuration when both the task is reconstructed and no obstacles are present.

Place, publisher, year, edition, pages
Institutt for produksjons- og kvalitetsteknikk , 2012. , 227 p.
URN: urn:nbn:no:ntnu:diva-21081Local ID: ntnudaim:7426OAI: diva2:629205
Available from: 2013-06-16 Created: 2013-06-16 Last updated: 2013-06-22Bibliographically approved

Open Access in DiVA

fulltext(124728 kB)61 downloads
File information
File name FULLTEXT01.pdfFile size 124728 kBChecksum SHA-512
Type fulltextMimetype application/pdf
cover(184 kB)40 downloads
File information
File name COVER01.pdfFile size 184 kBChecksum SHA-512
Type coverMimetype application/pdf
attachment(91900 kB)46 downloads
File information
File name ATTACHMENT01.zipFile size 91900 kBChecksum SHA-512
Type attachmentMimetype application/zip

By organisation
Department of Productions and Quality Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 61 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 101 hits
ReferencesLink to record
Permanent link

Direct link