Change search
ReferencesLink to record
Permanent link

Direct link
Efficient Acquisition and Clustering of Local Histograms for Representing Voxel Neighborhoods
University of Münster, Germany .
University of Münster, Germany .
2010 (English)In: VG'10 Proceedings of the 8th IEEE/EG international conference on Volume Graphics, 2010, 117-124 p.Conference paper (Refereed)
Abstract [en]

In the past years many interactive volume rendering techniques have been proposed, which exploit the neighboring environment of a voxel during rendering. In general on-the-fly acquisition of this environment is infeasible due to the high amount of data to be taken into account. To bypass this problem we propose a GPU preprocessing pipeline which allows to acquire and compress the neighborhood information for each voxel. Therefore, we represent the environment around each voxel by generating a local histogram (LH) of the surrounding voxel densities. By performing a vector quantization (VQ), the high number of LHs is than reduced to a few hundred cluster centroids, which are accessed through an index volume. To accelerate the required computational expensive processing steps, we take advantage of the highly parallel nature of this task and realize it using CUDA. For the LH compression we use an optimized hybrid CPU/GPU implementation of the k-means VQ algorithm. While the assignment of each LH to its nearest centroid is done on the GPU using CUDA, centroid recalculation after each iteration is done on the CPU. Our results demonstrate the applicability of the precomputed data, while the performance is increased by a factor of about 10 compared to previous approaches.

Place, publisher, year, edition, pages
2010. 117-124 p.
National Category
Computer and Information Science
URN: urn:nbn:se:liu:diva-92876DOI: 10.2312/VG/VG10/117-124ISBN: 978-3-905674-23-1OAI: diva2:623414
8th IEEE/EG International Symposium on Volume Graphics (VG 2010), 2–3 May 2010, Norrköping, Sweden
Available from: 2013-05-27 Created: 2013-05-27 Last updated: 2013-06-04

Open Access in DiVA

fulltext(1868 kB)221 downloads
File information
File name FULLTEXT01.pdfFile size 1868 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Ropinski, Timo
Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 221 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 426 hits
ReferencesLink to record
Permanent link

Direct link