CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt188",{id:"formSmash:upper:j_idt188",widgetVar:"widget_formSmash_upper_j_idt188",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt190_j_idt192",{id:"formSmash:upper:j_idt190:j_idt192",widgetVar:"widget_formSmash_upper_j_idt190_j_idt192",target:"formSmash:upper:j_idt190:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

An explicit algebraic Reynolds-stress and scalar-flux model for stably stratified flowsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2013 (English)In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 723, p. 91-125Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Cambridge University Press, 2013. Vol. 723, p. 91-125
##### Keyword [en]

stratified turbulence, turbulence modelling, turbulent flows
##### National Category

Fluid Mechanics and Acoustics
##### Identifiers

URN: urn:nbn:se:kth:diva-122471DOI: 10.1017/jfm.2013.116ISI: 000317659400005Scopus ID: 2-s2.0-84876206588OAI: oai:DiVA.org:kth-122471DiVA, id: diva2:622615
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt596",{id:"formSmash:j_idt596",widgetVar:"widget_formSmash_j_idt596",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt602",{id:"formSmash:j_idt602",widgetVar:"widget_formSmash_j_idt602",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt608",{id:"formSmash:j_idt608",widgetVar:"widget_formSmash_j_idt608",multiple:true});
##### Funder

Swedish Research Council, 621-2010-4147Formas
##### Note

##### In thesis

This work describes the derivation of an algebraic model for the Reynolds stresses and turbulent heat flux in stably stratified turbulent flows, which are mutually coupled for this type of flow. For general two-dimensional mean flows, we present a correct way of expressing the Reynolds-stress anisotropy and the (normalized) turbulent heat flux as tensorial combinations of the mean strain rate, the mean rotation rate, the mean temperature gradient and gravity. A system of linear equations is derived for the coefficients in these expansions, which can easily be solved with computer algebra software for a specific choice of the model constants. The general model is simplified in the case of parallel mean shear flows where the temperature gradient is aligned with gravity. For this case, fully explicit and coupled expressions for the Reynolds-stress tensor and heat-flux vector are given. A self-consistent derivation of this model would, however, require finding a root of a polynomial equation of sixth-order, for which no simple analytical expression exists. Therefore, the nonlinear part of the algebraic equations is modelled through an approximation that is close to the consistent formulation. By using the framework of a K-omega model (where K is turbulent kinetic energy and omega an inverse time scale) and, where needed, near-wall corrections, the model is applied to homogeneous shear flow and turbulent channel flow, both with stable stratification. For the case of homogeneous shear flow, the model predicts a critical Richardson number of 0.25 above which the turbulent kinetic energy decays to zero. The channel-flow results agree well with DNS data. Furthermore, the model is shown to be robust and approximately self-consistent. It also fulfils the requirements of realizability.

QC 20130523

Available from: 2013-05-22 Created: 2013-05-22 Last updated: 2017-12-06Bibliographically approved1. Explicit algebraic turbulence modelling in buoyancy-affected shear flows$(function(){PrimeFaces.cw("OverlayPanel","overlay622624",{id:"formSmash:j_idt888:0:j_idt892",widgetVar:"overlay622624",target:"formSmash:j_idt888:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Turbulence modelling applied to the atmospheric boundary layer$(function(){PrimeFaces.cw("OverlayPanel","overlay812382",{id:"formSmash:j_idt888:1:j_idt892",widgetVar:"overlay812382",target:"formSmash:j_idt888:1:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1375",{id:"formSmash:j_idt1375",widgetVar:"widget_formSmash_j_idt1375",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1428",{id:"formSmash:lower:j_idt1428",widgetVar:"widget_formSmash_lower_j_idt1428",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1429_j_idt1431",{id:"formSmash:lower:j_idt1429:j_idt1431",widgetVar:"widget_formSmash_lower_j_idt1429_j_idt1431",target:"formSmash:lower:j_idt1429:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});