Change search
ReferencesLink to record
Permanent link

Direct link
Paper based Supercapacitors for vehicle KERS-application
Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
2012 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

High mobility has been a standard in the modern world for decades. This has resulted in high energy consumption, diminishing fossil energy reserves and rising levels of greenhouse gases.

By recovering the energy lost in deceleration of vehicles the total energy consumption can be decreased and exhaust emissions reduced. This can be done with a kinetic energy recovery system (KERS) that converts kinetic energy to electric energy during deceleration, which then can be used for acceleration.

KERS requires an electrical storage device with high power density, due to the high power levels generated at heavy braking. Batteries does not generally meet these requirements, especially in the cost-effective point of view, but different types of capacitors can be used to obtain a cheap and effective system. To get such an energy storage device small, lightweight and inexpensive while the technology is sustainable requires avoidance of rare metals and hazardous materials.

In this master thesis energy and power levels for KERS has been modelled, based on standardized measurements techniques and small paper-based supercapacitors have been built and tested in order to model size, weight and price for a full-scale energy storage device to a KERS-application.

The models showed that energy consumption in urban traffic could be reduced with 18% and with an electrode material for the energy storage device with a capacitance of about 1500 F/m2 a reasonable size and weight is obtained. To reach these values of capacitance in paper-based supercapacitors further testing is required on area and layer dependence and for different electrodes. 

Place, publisher, year, edition, pages
2012. , 45 p.
Keyword [en]
KERS, regenerative braking, supercapacitor, ultracapacitor, fuel-saving, coated paper
National Category
Physical Sciences Engineering and Technology
URN: urn:nbn:se:miun:diva-18822OAI: diva2:618258
Educational program
Master of Science in Engineering Physics TTFYA 300 higher education credits
Physics, Chemistry, Mathematics
Available from: 2014-12-02 Created: 2013-04-26 Last updated: 2014-12-02Bibliographically approved

Open Access in DiVA

Paper_based_Supercapacitors_for_vehicle_KERS-application_by_Nicklas_Blomquist(1153 kB)103 downloads
File information
File name FULLTEXT01.pdfFile size 1153 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Department of Natural Sciences, Engineering and Mathematics
Physical SciencesEngineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 103 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 63 hits
ReferencesLink to record
Permanent link

Direct link