CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt204",{id:"formSmash:upper:j_idt204",widgetVar:"widget_formSmash_upper_j_idt204",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt212_j_idt216",{id:"formSmash:upper:j_idt212:j_idt216",widgetVar:"widget_formSmash_upper_j_idt212_j_idt216",target:"formSmash:upper:j_idt212:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Skew-symmetric matrix pencils: codimension counts and the solution of a pair of matrix equationsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2013 (English)In: Linear Algebra and its Applications, ISSN 0024-3795, E-ISSN 1873-1856, Vol. 438, no 8, p. 3375-3396Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Elsevier, 2013. Vol. 438, no 8, p. 3375-3396
##### Keywords [en]

Pair of skew-symmetric matrices, Matrix equations, Orbits, Codimension
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-68465DOI: 10.1016/j.laa.2012.11.025ISI: 000316521500015OAI: oai:DiVA.org:umu-68465DiVA, id: diva2:618018
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt967",{id:"formSmash:j_idt967",widgetVar:"widget_formSmash_j_idt967",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt980",{id:"formSmash:j_idt980",widgetVar:"widget_formSmash_j_idt980",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1005",{id:"formSmash:j_idt1005",widgetVar:"widget_formSmash_j_idt1005",multiple:true});
##### Funder

eSSENCE - An eScience CollaborationSwedish Research Council, A0581501Available from: 2013-04-25 Created: 2013-04-22 Last updated: 2018-06-08Bibliographically approved
##### In thesis

The homogeneous system of matrix equations (X(T)A + AX, (XB)-B-T + BX) = (0, 0), where (A, B) is a pair of skew-symmetric matrices of the same size is considered: we establish the general solution and calculate the codimension of the orbit of (A, B) under congruence. These results will be useful in the development of the stratification theory for orbits of skew-symmetric matrix pencils.

1. Skew-symmetric matrix pencils: stratification theory and tools$(function(){PrimeFaces.cw("OverlayPanel","overlay709589",{id:"formSmash:j_idt1512:0:j_idt1516",widgetVar:"overlay709589",target:"formSmash:j_idt1512:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Tools for Structured Matrix Computations: Stratifications and Coupled Sylvester Equations$(function(){PrimeFaces.cw("OverlayPanel","overlay872408",{id:"formSmash:j_idt1512:1:j_idt1516",widgetVar:"overlay872408",target:"formSmash:j_idt1512:1:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt2001",{id:"formSmash:j_idt2001",widgetVar:"widget_formSmash_j_idt2001",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2065",{id:"formSmash:lower:j_idt2065",widgetVar:"widget_formSmash_lower_j_idt2065",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2066_j_idt2068",{id:"formSmash:lower:j_idt2066:j_idt2068",widgetVar:"widget_formSmash_lower_j_idt2066_j_idt2068",target:"formSmash:lower:j_idt2066:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});