Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Co-Design of Antenna and LNA for 1.7 - 2.7 GHz
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
2012 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

In a radio frequency (RF) system, the front-end of a radio receiver consists of an active antenna arrangement with a conducting mode antenna along with an active circuit. This arrangement helps avoid losses and SNR degradation due to the use of a coaxial cable. The active circuit is essentially an impedance matching network and a low noise amplification (LNA) stage. The input impedance of the antenna is always different from the source impedance required to be presented at the LNA input for maximum power gain and this gives rise to undesired reflections at the antenna-LNA junction. This necessitates a matching network that provides the impedance matching between the antenna and the LNA at a central frequency (CF). From the Friis formula it is seen that the total noise figure (NF) of the system is dependent on the noise figure and gain of the first stage. So, by having an LNA that provides a high gain (typically >15 dB) which inserts minimum possible noise (desirably < 1 dB), the overall noise figure of the system can be maintained low. The LNA amplifies the signal to a suitable power level that will enable the subsequent demodulation and decoding stages to efficiently recover the original signal. The antenna and the LNA can be matched with each other in two possible ways. The first approach is the traditional method followed in RF engineering where in both the antenna and LNA are matched to 50 Ω terminations and connected to each other. In this classical method, the antenna and LNA are matched to 50 Ω at the CF and does not take into account the matching at other frequencies in the operation range. The second approach employs a co-design method to match the antenna and LNA without a matching network or with minimum possible components for matching. This is accomplished by varying one or more parameters of either the antenna or LNA to control the impedances and ultimately achieve a matching over a substantial range of frequencies instead at the CF alone. The co-design method is shown to provide higher gain and a lower NF with reduced number of components, cost and size as compared to the classical method.

The thesis work presented here is a study, design and manufacturing of an antenna-LNA module for a wide frequency range of 1.7 GHz – 2.7 GHz to explore the gain and NF improvements in the co-design approach. Planar micro strip patch antennas and GaAs E-pHEMT transistor based LNA’s are designed and the matching and co-design are simulated to test the gain and NF improvements. Furthermore, fully functional prototypes are developed with Roger R04360 substrate and the results from simulations and actual measurements are compared and discussed

Place, publisher, year, edition, pages
2012. , 64 p.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:liu:diva-91327ISRN: LiU-ITN-TEK-A--12/046--SEOAI: oai:DiVA.org:liu-91327DiVA: diva2:617196
Subject / course
Electrical Engineering
Uppsok
Technology
Examiners
Available from: 2013-04-22 Created: 2013-04-22 Last updated: 2013-04-22Bibliographically approved

Open Access in DiVA

fulltext(3149 kB)616 downloads
File information
File name FULLTEXT01.pdfFile size 3149 kBChecksum SHA-512
9a6ff6bed92e7412c5d7a83dae785f356f9308b84d321b986a69b56f3e96be394b6a3b963a13a77e975ec9702f45abef423e5891ba22d88d0ea60918236dee21
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Bhaskar Gudey, BalaKane, Jacob
By organisation
Physics and ElectronicsThe Institute of Technology
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 616 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 189 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf