Change search
ReferencesLink to record
Permanent link

Direct link
PyroTRF-ID: a novel bioinformatics methodology for the affiliation of terminal-restriction fragments using 16S rRNA gene pyrosequencing data
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
Show others and affiliations
2012 (English)In: BMC Microbiology, ISSN 1471-2180, Vol. 12, 306- p.Article in journal (Refereed) Published
Abstract [en]

Background: In molecular microbial ecology, massive sequencing is gradually replacing classical fingerprinting techniques such as terminal-restriction fragment length polymorphism (T-RFLP) combined with cloning-sequencing for the characterization of microbiomes. Here, a bioinformatics methodology for pyrosequencing-based T-RF identification (PyroTRF-ID) was developed to combine pyrosequencing and T-RFLP approaches for the description of microbial communities. The strength of this methodology relies on the identification of T-RFs by comparison of experimental and digital T-RFLP profiles obtained from the same samples. DNA extracts were subjected to amplification of the 16S rRNA gene pool, T-RFLP with the HaeIII restriction enzyme, 454 tag encoded FLX amplicon pyrosequencing, and PyroTRF-ID analysis. Digital T-RFLP profiles were generated from the denoised full pyrosequencing datasets, and the sequences contributing to each digital T-RF were classified to taxonomic bins using the Greengenes reference database. The method was tested both on bacterial communities found in chloroethene-contaminated groundwater samples and in aerobic granular sludge biofilms originating from wastewater treatment systems. Results: PyroTRF-ID was efficient for high-throughput mapping and digital T-RFLP profiling of pyrosequencing datasets. After denoising, a dataset comprising ca. 10'000 reads of 300 to 500 bp was typically processed within ca. 20 minutes on a high-performance computing cluster, running on a Linux-related CentOS 5.5 operating system, enabling parallel processing of multiple samples. Both digital and experimental T-RFLP profiles were aligned with maximum cross-correlation coefficients of 0.71 and 0.92 for high- and low-complexity environments, respectively. On average, 63 +/- 18% of all experimental T-RFs (30 to 93 peaks per sample) were affiliated to phylotypes. Conclusions: PyroTRF-ID profits from complementary advantages of pyrosequencing and T-RFLP and is particularly adapted for optimizing laboratory and computational efforts to describe microbial communities and their dynamics in any biological system. The high resolution of the microbial community composition is provided by pyrosequencing, which can be performed on a restricted set of selected samples, whereas T-RFLP enables simultaneous fingerprinting of numerous samples at relatively low cost and is especially adapted for routine analysis and follow-up of microbial communities on the long run.

Place, publisher, year, edition, pages
2012. Vol. 12, 306- p.
National Category
Natural Sciences
URN: urn:nbn:se:uu:diva-196760DOI: 10.1186/1471-2180-12-306ISI: 000314826400001OAI: diva2:611043
Available from: 2013-03-14 Created: 2013-03-13 Last updated: 2013-03-14Bibliographically approved

Open Access in DiVA

fulltext(481 kB)62 downloads
File information
File name FULLTEXT01.pdfFile size 481 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Sinclair, Lucas
By organisation
In the same journal
BMC Microbiology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 62 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 186 hits
ReferencesLink to record
Permanent link

Direct link