Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energy Efficiency through Thermal Energy Storage: Possibilities for the Swedish Building Stock
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
2013 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The need for heating and cooling in buildings constitutes a considerable part of the total energy use in a country and reducing this need is of outmost importance in order to reach national and international goals for reducing energy use and emissions. One important way of reaching these goals is to increase the proportion of renewable energy used for heating and cooling of buildings. Perhaps the largest obstacle with this is the often occurring mismatch between the availability of renewable energy and the need for heating or cooling, hindering this energy to be used directly. This is one of the problems that can be solved by using thermal energy storage (TES) in order to save the heat or cold from when it is available to when it is needed.

This thesis is focusing on the combination of TES techniques and buildings to achieve increased energy efficiency for heating and cooling. Various techniques used for TES as well as the combination of TES in buildings have been investigated and summarized through an extensive literature review. A survey of the Swedish building stock was also performed in order to define building types common in Sweden. Within the scope of this thesis, the survey resulted in the selection of three building types, two single family houses and one office building, out of which the two residential buildings were used in a simulation case study of passive TES with increased thermal mass (both sensible and latent). The second case study presented in the thesis is an evaluation of an existing seasonal borehole storage of solar heat for a residential community. In this case, real measurement data was used in the evaluation and in comparisons with earlier evaluations.

The literature reviews showed that using TES opens up potential for reduced energy demand and reduced peak heating and cooling loads as well as possibilities for an increased share of renewable energy to cover the energy demand. By using passive storage through increased thermal mass of a building it is also possible to reduce variations in the indoor temperature and especially reduce excess temperatures during warm periods, which could result in avoiding active cooling in a building that would otherwise need it. The analysis of the combination of TES and building types confirmed that TES has a significant potential for increased energy efficiency in buildings but also highlighted the fact that there is still much research required before some of the technologies can become commercially available. In the simulation case study it was concluded that only a small reduction in heating demand is possible with increased thermal mass, but that the time with indoor temperatures above 24 °C can be reduced by up to 20%. The case study of the borehole storage system showed that although the storage system worked as planned, heat losses in the rest of the system as well as some problems with the system operation resulted in a lower solar fraction than projected.

The work presented within this thesis has shown that TES is already used successfully for many building applications (e.g. domestic hot water stores and water tanks for storing solar heat) but that there still is much potential in further use of TES. There are, however, barriers such as a need for more research for some storage technologies as well as storage materials, especially phase change material storage and thermochemical storage.

Abstract [sv]

Behovet av värme och kyla i byggnader utgör en betydande del av ett lands totala energianvändning och att reducera detta behov är av yttersta vikt för att nå nationella samt internationella mål för minskad energianvändning och minskade utsläpp. En viktig väg för att nå dessa mål är att öka andelen förnyelsebar energi för kylning och uppvärmning av byggnader. Det kanske största hindret med detta är det faktum att det ofta råder obalans mellan tillgången på förnyelsebar energi och behovet av värme och kyla, vilket gör att denna energi inte kan utnyttjas direkt. Detta är ett av problemen som kan lösas genom att använda termisk energilagring (TES) för att lagra värme eller kyla från när det finns tillgängligt till dess att det behövs.

Denna avhandling fokuserar på kombinationen av TES och byggnader för att nå högre energieffektivitet för uppvärmning och kylning. Olika tekniker för energilagring, samt även kombinationen av TES och byggnader, har undersökts och sammanfattats genom en omfattande litteraturstudie. För att kunna identifiera byggnadstyper vanliga i Sverige gjordes även en kartläggning av det svenska byggnadsbeståndet. Inom ramen för denna avhandling resulterade kartläggningen i valet av tre typbyggnader, två småhus samt en kontorsbyggnad, utav vilka de två småhusen användes i en simuleringsfallstudie av passiv TES genom ökad termisk massa (både sensibel och latent). Den andra fallstudien som presenteras i denna avhandling är en utvärdering av ett existerande borrhålslager för säsongslagring av solvärme i ett bostadsområde. I detta fall användes verkliga mätdata i utvärderingen samt i jämförelser med tidigare utvärderingar.

Litteraturstudien visade att användningen av TES öppnar upp möjligheter för minskat energibehov och minskade topplaster för värme och kyla samt även möjligheter till en ökad andel förnyelsebar energi för att täcka energibehovet. Genom att använda passiv lagring genom ökad termisk massa i byggnaden är det även möjligt att minska variationer i inomhustemperaturen och speciellt minska övertemperaturer under varma perioder; något som kan leda till att byggnader som normalt behöver aktiv kylning kan klara sig utan sådan. Analysen av kombinationen av TES och byggnadstyper bekräftade att TES har en betydande potential för ökad energieffektivitet i byggnader, men belyste även det faktum att det fortfarande krävs mycket forskning innan vissa av lagringsteknikerna kan bli kommersiellt tillgängliga. I simuleringsfallstudien drogs slutsatsen att en ökad termisk massa endast kan bidra till en liten minskning i värmebehovet, men att tiden med inomhustemperaturer över 24 °C kan minskas med upp till 20 %. Fallstudien av borrhålslagret visade att även om själva lagringssystemet fungerade som planerat så ledde värmeförluster i resten av systemet, samt vissa problem med driften av systemet, till en lägre solfraktion än beräknat.

Arbetet inom denna avhandling har visat att TES redan används med framgång i många byggnadsapplikationer (t.ex. varmvattenberedare eller ackumulatortankar för lagring av solvärme) men att det fortfarande finns en stor potential i en utökad användning av TES. Det finns dock hinder såsom behovet av mer forskning för både vissa lagringstekniker samt lagringsmaterial, i synnerhet för lagring med fasändringsmaterial och termokemisk lagring.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. , xiv, 68 p.
Series
Trita-KRV, ISSN 1100-7990 ; 13:01
Keyword [en]
thermal energy storage, buildings, energy efficiency, energy savings, peak load reduction, Swedish building stock
Keyword [sv]
termisk energilagring, byggnader, energieffektivisering, energibesparing, toppbelastningsutjämning, Sveriges byggnadsbestånd
National Category
Environmental Engineering
Identifiers
URN: urn:nbn:se:kth:diva-118734ISBN: 978-91-7501-653-5 (print)OAI: oai:DiVA.org:kth-118734DiVA: diva2:607646
Presentation
2013-03-25, K2, Teknikringen 28, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
The Swedish Energy Agency, P31894-1
Note

QC 20130225

Available from: 2013-02-25 Created: 2013-02-25 Last updated: 2013-02-25Bibliographically approved
List of papers
1. Energy Efficiency through Thermal Energy Storage - Evaluation of the Possibilities for the Swedish Building Stock, Phase 1
Open this publication in new window or tab >>Energy Efficiency through Thermal Energy Storage - Evaluation of the Possibilities for the Swedish Building Stock, Phase 1
2010 (English)In: Clima2010, Antalya, Turkiet, 2010Conference paper, Published paper (Other academic)
Abstract [en]

As a first step in assessing the potential of thermal energy storage in Swedish buildings, the current situation of the Swedish building stock and different storage methods are discussed in this paper. Overall, many buildings are from the 1960’s or earlier having a relatively high energy demand, creating opportunities for large energy savings. The major means of heating are electricity for detached houses and district heating for multi dwelling houses and premises. Cooling needs are relatively low but steadily increasing, emphasizing the need to consider energy storage for both heat and cold. The thermal mass of a building is important for passive storage of thermal energy but this has not been considered much when constructing buildings in Sweden. Instead, common ways of storing thermal energy in Swedish buildings today is in water storage tanks or in the ground using boreholes, while latent thermal energy storage is still very uncommon.

Place, publisher, year, edition, pages
Antalya, Turkiet: , 2010
Keyword
thermal energy storage, energy efficiency
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-118730 (URN)
Conference
Clima2010 , Antalya, Turkiet, 9-12 maj, 2010
Note

QC 20130222

Available from: 2013-02-25 Created: 2013-02-25 Last updated: 2013-02-25Bibliographically approved
2. Evaluation of a high temperature solar thermal seasonal borehole storage
Open this publication in new window or tab >>Evaluation of a high temperature solar thermal seasonal borehole storage
2011 (English)In: ISES Solar World Congress, Kassel, 2011Conference paper, Published paper (Other academic)
Abstract [en]

A solar thermal system with seasonal borehole storage for heating of a residential area in Anneberg, Sweden, approximately 10 km north of Stockholm, has been in operation since late 2002. Originally, the project was part of the EU THERMIE project “Large-scale Solar Heating Systems for Housing Developments” (REB/0061/97) and was the first solar heating plant in Europe with borehole storage in rock not utilizing a heat pump. Earlier evaluations of the system show lower performance than the preliminary simulation study, with residents complaining of a high use of electricity for domestic hot water (DHW) preparation and auxiliary heating. One explanation mentioned in the earlier evaluations is that the borehole storage had not yet reached “steady state” temperatures at the time of evaluation.Many years have passed since then and this paper presents results from a new evaluation. The main aim of this work is to evaluate the current performance of the system based on several key figures, as well as on system function based on available measurement data. The analysis show that though the borehole storage now has reached a quasi-steady state and operates as intended, the auxiliary electricity consumption is much higher than the original design values largely due to high losses in the distribution network, higher heat loads as well as lower solar gains.

Place, publisher, year, edition, pages
Kassel: , 2011
Keyword
Thermal energy storage, seasonal storage, solar heating, borehole, värmelager, långtidslager, solvärme, borrhål
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-118731 (URN)
Conference
ISES Solar World Congress , Kassel, 28 august - 2 september, 2011
Note

QC 20130225

Available from: 2013-02-25 Created: 2013-02-25 Last updated: 2013-02-25Bibliographically approved
3. Thermal energy storage in Swedish single family houses: a case study
Open this publication in new window or tab >>Thermal energy storage in Swedish single family houses: a case study
2012 (English)In: InnoStock The 12th International Conference on Energy Storage: Book of Abstract, 2012Conference paper, Published paper (Other academic)
Abstract [en]

In a Nordic climate, space heating (SH) and domestic hot water (DHW) used in buildings constitute a considerable part of the total energy use in the country. For 2010, energy used for SH and DHW amounted to almost 90 TWh in Sweden which corresponds to 60 % of the energy used in the residential and service sector, or almost 24 % of the total final energy use for the country.

Storing heat and cold with the use of thermal energy storage (TES) can be one way of increasing the energy efficiency of a building by opening up possibilities for alternative sources of heat or cold through a reduced mismatch between supply and demand. Thermal energy storage without the use of specific control systems are said to be passive and different applications using passive TES have been shown to increase energy efficiency and/or reduce power peaks of systems supplying the heating and cooling needs of buildings, as well as having an effect on the indoor climate. Results are however not consistent between studies and focus tend to be on the reduction of cooling energy or cooling power peaks. In this paper, passive TES introduced through an increased thermal mass in the building envelope to two single family houses with different insulation standard is investigated with building energy simulations. A Nordic climate is used and the focus of this study is both on the reduction of space heating demand and space heating power, as well as on reduction of excess temperatures in residential single family houses without active cooling systems. Care is taken to keep the building envelope characteristics other than the thermal mass equal for all cases so that any observations made can be derived to the change in thermal mass.

Results show that increasing the sensible thermal mass in a single family house can reduce the heating demand only slightly (1-4 %) and reduce excess temperatures (temperatures above 24 degrees C) by up to 20 %. Adding a layer of PCM (phase change materials) to the light building construction can give similar reduction in heating demand and excess temperatures, however the phase change temperature is important for the results.

Keyword
thermal energy storage, TES, thermal mass, PCM, phase change materials, single family house, energy savings, excess temperatures, passive house, simulation, TRNSYS
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-118729 (URN)978-84-938793-4-1 (ISBN)
Conference
Innostock, 12th international conference on energy storage, Lleida, Spain, May 16-18, 2012
Note

QC 20130225

Available from: 2013-02-25 Created: 2013-02-25 Last updated: 2013-02-25Bibliographically approved
4. Combining Thermal Energy Storage with Buildings: A Review
Open this publication in new window or tab >>Combining Thermal Energy Storage with Buildings: A Review
2015 (English)In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 42, 1305-1325 p.Article, review/survey (Refereed) Published
Abstract [en]

Thermal Energy Storage (TES) has been a topic of research for quite some time and has proven to be a technology that can have positive effects on the energy efficiency of a building by contributing to an increased share of renewable energy and/or reduction in energy demand or peak loads for both heating and cooling. There are many TES technologies available, both commercial and emerging, and the amount of published literature on the subject is considerable. Literature discussing the combination of thermal energy storage with buildings is however lacking and it is therefore not an easy task to decide which type of TES to use in a certain building. The goal of this paper is to give a comprehensive review of a wide variety of TES technologies, with a clear focus on the combination of storage technology and building type. The results show many promising TES technologies, both for residential and commercial buildings, but also that much research still is required, especially in the fields of phase change materials and thermochemical storage.

Keyword
thermal energy storage, buildings, energy efficiency, energy savings, peak load reduction, termisk energilagring, byggnader, energieffektivisering, energibesparing, toppbelastningsutjämning
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-118732 (URN)10.1016/j.rser.2014.11.031 (DOI)000348084800098 ()2-s2.0-84911942628 (Scopus ID)
Note

Updated from submitted to published.

QC 20150325

Available from: 2013-02-25 Created: 2013-02-25 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

fulltext(3913 kB)6654 downloads
File information
File name FULLTEXT01.pdfFile size 3913 kBChecksum SHA-512
835246de3844db4ca5aab415d7ff0fad76fcc067e15c2da7c6a895dcd562aace8571f5269987ffb99d8c4592abab59ac4f360ba99eb90fd9b292fd3ec4580fb7
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Heier, Johan
By organisation
Heat and Power Technology
Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 6654 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 592 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf