CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt188",{id:"formSmash:upper:j_idt188",widgetVar:"widget_formSmash_upper_j_idt188",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt190_j_idt192",{id:"formSmash:upper:j_idt190:j_idt192",widgetVar:"widget_formSmash_upper_j_idt190_j_idt192",target:"formSmash:upper:j_idt190:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Analysis of Dynamics of the Tippe TopPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2013 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Linköping: Linköping University Electronic Press, 2013. , p. 24
##### Series

Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1500
##### National Category

Mathematical Analysis
##### Identifiers

URN: urn:nbn:se:liu:diva-88316ISBN: 978-91-7519-692-3 (print)OAI: oai:DiVA.org:liu-88316DiVA, id: diva2:602220
##### Public defence

2013-02-26, BL32 Nobel, Hus B, Campus Valla, Linköping University, Linköping, 10:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt596",{id:"formSmash:j_idt596",widgetVar:"widget_formSmash_j_idt596",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt602",{id:"formSmash:j_idt602",widgetVar:"widget_formSmash_j_idt602",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt608",{id:"formSmash:j_idt608",widgetVar:"widget_formSmash_j_idt608",multiple:true});
Available from: 2013-02-01 Created: 2013-01-31 Last updated: 2013-11-14Bibliographically approved
##### List of papers

The Tippe Top is a toy that has the form of a truncated sphere with a small peg. When spun on its spherical part on a flat supporting surface it will start to turn upside down to spin on its peg. This counterintuitive phenomenon, called inversion, has been studied for some time, but obtaining a complete description of the dynamics of inversion has proven to be a difficult problem. This is because even the most simplified model for the rolling and gliding Tippe Top is a non-integrable, nonlinear dynamical system with at least 6 degrees of freedom. The existing results are based on numerical simulations of the equations of motion or an asymptotic analysis showing that the inverted position is the only asymptotically attractive and stable position for the Tippe Top under certain conditions. The question of describing dynamics of inverting solutions remained rather intact.

In this thesis we develop methods for analysing equations of motion of the Tippe Top and present conditions for oscillatory behaviour of inverting solutions.

Our approach is based on an integrated form of Tippe Top equations that leads to the Main Equation for the Tippe Top (METT) describing the time evolution of the inclination angle $\theta(t)$ for the symmetry axis of the Tippe Top.

In particular we show that we can take values for physical parameters such that the potential function $V(\cos\theta,D,\lambda)$ in METT becomes a rational function of $\cos\theta$, which is easier to analyse. We estimate quantities characterizing an inverting Tippe Top, such as the period of oscillation for $\theta(t)$ as it moves from a neighborhood of $\theta=0$ to a neighborhood of $\theta=\pi$ during inversion. Results of numerical simulations for realistic values of physical parameters confirm the conclusions of the mathematical analysis performed in this thesis.

1. Tippe Top Equations and Equations for the Related Mechanical Systems$(function(){PrimeFaces.cw("OverlayPanel","overlay523761",{id:"formSmash:j_idt645:0:j_idt650",widgetVar:"overlay523761",target:"formSmash:j_idt645:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. High frequency behaviour of a rolling ball and simplification of the Main Equation for the Tippe Top$(function(){PrimeFaces.cw("OverlayPanel","overlay602201",{id:"formSmash:j_idt645:1:j_idt650",widgetVar:"overlay602201",target:"formSmash:j_idt645:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Dynamics of an inverting Tippe Top$(function(){PrimeFaces.cw("OverlayPanel","overlay602360",{id:"formSmash:j_idt645:2:j_idt650",widgetVar:"overlay602360",target:"formSmash:j_idt645:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1375",{id:"formSmash:j_idt1375",widgetVar:"widget_formSmash_j_idt1375",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1428",{id:"formSmash:lower:j_idt1428",widgetVar:"widget_formSmash_lower_j_idt1428",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1429_j_idt1431",{id:"formSmash:lower:j_idt1429:j_idt1431",widgetVar:"widget_formSmash_lower_j_idt1429_j_idt1431",target:"formSmash:lower:j_idt1429:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});