Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Statistical performance of observational work sampling for assessment of categorical exposure variables: A simulation approach illustrated using PATH data
University of Gävle, Faculty of Health and Occupational Studies, Department of Occupational and Public Health Sciences. University of Gävle, Centre for Musculoskeletal Research.ORCID iD: 0000-0003-1443-6211
University of Gävle, Faculty of Health and Occupational Studies, Department of Occupational and Public Health Sciences. University of Gävle, Centre for Musculoskeletal Research.ORCID iD: 0000-0003-2939-0236
University of Gävle, Faculty of Health and Occupational Studies, Department of Occupational and Public Health Sciences. University of Gävle, Centre for Musculoskeletal Research. Department of Work Environment, University of Massachusetts Lowell, USA.
2014 (English)In: Annals of Occupational Hygiene, ISSN 0003-4878, E-ISSN 1475-3162, Vol. 58, no 3, 294-316 p.Article in journal (Refereed) Published
Abstract [en]

Objectives. Observational work sampling is often used in occupational studies to assess categorical biomechanical exposures and occurrence of specific work tasks. The statistical performance of data obtained by work sampling is, however, not well understood, impeding informed measurement strategy design. The purpose of this study was to develop a procedure for assessing the statistical properties of work sampling strategies evaluating categorical exposure variables, and to illustrate the usefulness of this procedure to examine bias and precision of exposure estimates from samples of different sizes.

Methods. From a parent data set of observations on 10 construction workers performing a single operation, the probabilities were determined for each worker of performing four component tasks and working in four mutually exclusive trunk posture categories (neutral, mild flexion, severe flexion, twisted). Using these probabilities, 5000 simulated data sets were created via probability-based re-sampling for each of six sampling strategies, ranging from 300 to 4500 observations. For each strategy, mean exposure and exposure variability metrics were calculated at both the operation- and task-levels and, for each of these, bias and precision were assessed across the 5000 simulations.

Results. Estimates of exposure variability were substantially more uncertain at all sample sizes than estimates of mean exposures and task proportions. Estimates at small sample sizes were also biased. With only 600 samples, proportions of the different tasks and of working with a neutral trunk posture (the most common) were within 10% of the true target value in at least 80% of all the simulated data sets; rarer exposures required at least 1500 samples. For most task-level mean exposure variables and for all operation- and task-level estimates of exposure variability, performance was low, even with 4500 samples. In general, the precision of mean exposure estimates did not depend on the exposure variability between workers.

Conclusions. The suggested probability-based simulation approach proved to be versatile and generally suitable for assessing bias and precision of data collection strategies using work sampling to estimate categorical data. The approach can be used in both real and hypothetical scenarios, in ergonomics as well as in other areas of occupational epidemiology and intervention research. The reported statistical properties associated with sample size are likely widely relevant to studies using work sampling to assess categorical variables.

Place, publisher, year, edition, pages
2014. Vol. 58, no 3, 294-316 p.
Keyword [en]
epidemiology, ergonomics, precision, statistical efficiency, working postures
National Category
Environmental Health and Occupational Health
Identifiers
URN: urn:nbn:se:hig:diva-13691DOI: 10.1093/annhyg/met063ISI: 000333046700004PubMedID: 24353010Scopus ID: 2-s2.0-84896338641OAI: oai:DiVA.org:hig-13691DiVA: diva2:600083
Funder
Forte, Swedish Research Council for Health, Working Life and Welfare, 2009-1761
Available from: 2013-01-23 Created: 2013-01-23 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

fulltext(727 kB)