Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Classification of spectral signatures in biological aerosols
Umeå University, Faculty of Science and Technology, Department of Physics.
2013 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

In this thesis multivariate methods were used to evaluate pretreatment methods, such as normalization, as well as classification possibilities of data collected with Laser Induced Breakdown Spectroscopy (LIBS). The LIBS system that FOI is currently developing for the purpose of classifying biological airborne threats was used to collect data from ten different samples in a laboratory environment. Principal component analysis (PCA) shows that it is possible to observe differences between samples using the two types of data acquired from the LIBS system, i.e., 2D CCD camera images and 1D spectra extracted from the image. Further results using partial least squares discriminant analysis (PLS-DA) show that normalization of the data only has visual effects in the PCA score-plots and do not affect the models predictability. Results also show that cropping and binning the pixels in the image is possible to some extent without losing significant predictability.

Abstract [sv]

I det här examensarbetet har multivariat dataanalys använts för att utvärdera förbehandlings-metoder, t.ex. normalisering, och klassificeringsmöjligheter för spektralt data insamlat med Laser Induced Breakdown Spectroscopy (LIBS). Systemet som FOI utvecklat under de senaste åren i syfte att analysera enstaka partiklar i luft har använts i laboratoriemiljö för att samla data från tio olika prover. En principalkomponentanalys (PCA) visar att det går att se skillnader mellan proverna utifrån de två datatyperna som erhålls från LIBS, 2D CCD bilder och spektra extraherat från dessa bilder. Vidare så visar resultat från partiell minstakvadrat-diskriminantanalys (PLS-DA) att normalisering av data endast har en visuell effekt i PCA score-plottar och inte har någon inverkan på modellernas prediktionsfömåga. Resultat visar även på möjligheter att beskära och binna pixlar i bilderna i viss utstreckning utan att förlora signifikant prediktionsförmåga.

Place, publisher, year, edition, pages
2013. , 30 p.
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:umu:diva-64002OAI: oai:DiVA.org:umu-64002DiVA: diva2:586115
Subject / course
Examensarbete i teknisk fysik
Educational program
Master of Science Programme in Engineering Physics
Uppsok
Technology
Supervisors
Examiners
Available from: 2013-01-19 Created: 2013-01-11 Last updated: 2013-01-19Bibliographically approved

Open Access in DiVA

Classification of spectral signatures in biological aerosols(1266 kB)562 downloads
File information
File name FULLTEXT01.pdfFile size 1266 kBChecksum SHA-512
d280ef139acd9229b0789860a8146088b0046e9034ef0a0683d82d7c0a86f19b7a8668b73443710898d8b0e6b6caf47072298454c3b5642866c202360b8dfa10
Type fulltextMimetype application/pdf

By organisation
Department of Physics
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 562 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 287 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf