Change search
ReferencesLink to record
Permanent link

Direct link
Prechemistry barriers and checkpoints do not contribute to fidelity and catalysis as long as they are not rate limiting
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology.
2012 (English)In: Theoretical Chemistry accounts, ISSN 1432-881X, E-ISSN 1432-2234, Vol. 131, no 12, 1288- p.Article in journal (Refereed) Published
Abstract [en]

In the preceding article, "Perspective: Prechemistry conformational changes in DNA polymerase mechanisms" contributed by Schlick and coworkers as well as previous studies of these workers (Schlick et al. in Theor Chem Acc 131: 1287, 2012; Radhakrishnan and Schlick in J Am Chem Soc 127: 13245-13252, 2005; Radhakrishnan and Schlick in Biochem Biophys Res Commun 350: 521-529, 2006; Radhakrishnan et al. in Biochemistry 45: 15142-15156, 2006; Radhakrishnan and Schlick in Proc Natl Acad Sci USA 101: 5970-5975, 2004) have argued that the conformational changes preceding the chemical step contribute to DNA synthesis and to the fidelity of DNA polymerases. In one of our previous investigations (Ram Prasad and Warshel in Proteins 79:2900-2919, 2011), we argued and showed that as long as the free energy barriers associated with any of the prechemistry steps are not rate limiting, they could not contribute to the catalysis and then to the fidelity. Though all our arguments are based on exact and well-defined scientific logics, Schlick and coworkers seem to overlook some of the clear conditions in these arguments and in particular the requirement that the chemical step is rate limiting in their arguments that the prechemistry barriers contribute to the catalysis. In fact, as long as the prechemistry steps are not rate limiting, we have shown that the enzymes cannot carry the memory of the previous steps. We also address other potential misunderstandings about several key issues; First, we clarify that it is misleading to relate the prechemistry proposal to the clear fact that the substrate-induced conformational changes determine the final preorganization (the issue is the height of the barrier of the enzyme substrate system and not the trivial fact that the enzyme has to change its structure when the substrate binds). Second, we address the presumed role of dynamical effects in enzyme catalysis and the assumption that any observable should be explored in studies of biological function even if they are not relevant to the given effect. Third, we clarify that the fidelity cannot be explained or quantified by invoking the induced fit or conformational selection effects but by evaluating the free energy contributions to the rate-limiting steps from the structures of the corresponding systems (that of course can reflect the induce fit structural changes). Overall, we put a major emphasis on clarifying what is the prechemistry proposal and thus on trying to force the reader to focus on the only real controversy. We of course dismiss any implication that our studies cannot explore mutational effects as we actually pioneered such computational studies and we clarify that in studies of chemical rates, the focus must be placed on evaluating the chemical barriers, rather than on irrelevant factors, but that the calculations of the chemical barriers must consider all the factors that determine this barrier (including metal ions) and also examine if needed different problematic proposals such as dynamical effects, tunneling, and prechemistry.

Place, publisher, year, edition, pages
2012. Vol. 131, no 12, 1288- p.
Keyword [en]
DNA polymerase beta, Prechemistry, Checkpoints, Enzyme catalysis
National Category
Natural Sciences
URN: urn:nbn:se:uu:diva-191047DOI: 10.1007/s00214-012-1288-6ISI: 000312077100004OAI: diva2:585252
Swedish Research Council, 2010-5026
Available from: 2013-01-09 Created: 2013-01-09 Last updated: 2013-07-04Bibliographically approved

Open Access in DiVA

Accept with cover(1941 kB)16 downloads
File information
File name FULLTEXT02.pdfFile size 1941 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Kamerlin, Lynn
By organisation
Computational and Systems Biology
In the same journal
Theoretical Chemistry accounts
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 16 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 205 hits
ReferencesLink to record
Permanent link

Direct link