Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling user-to-user growth: Predicting word of mouth in social networks
KTH, School of Information and Communication Technology (ICT).
2012 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [sv]

Syftet med uppsatsen var att undersöka vilka faktorer som är viktiga att beakta när man modellerar informationsspridning i ett socialt nätverk. Dessa bestämmande faktorer sätts därefter i relation till några existerande modeller inom området, detta för att få en förståelse för hur faktorerna kan integreras i just en sådan modell. Uppsatsen är skriven ur perspektivet av musik-streaming företaget Spotify. Ställningstaganden gällande modelldesign utgår från de förutsättningar och behov Spotify har, samt vilken typ av data de har tillgång till. Resultatet är en handlingsplan, eller guide, som kan användas som en utgångspunkt av Spotify, eller andra företag med liknande intressen, när de ska utveckla en modell för informationsspridning i sociala nätverk.

Abstract [en]

This purpose of this paper is to investigate what factors are important to consider when attempting to model information diffusion in a social network. These determining factors are put in relation to the nature of the design of some common existing models in this area, in order to get an understanding of how these factors can be translated into elements of such models. The paper assumes the point of view of the online music distribution company Spotify, and approaches model design choices with consideration of what needs they have, as well as what data they have access to. The result is a roadmap, which can be used as a foundation, by Spotify or similar companies, when developing an information diffusion model.

Place, publisher, year, edition, pages
2012. , 23 p.
Series
Trita-ICT-EX, 2012:236
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-108092OAI: oai:DiVA.org:kth-108092DiVA: diva2:578962
Uppsok
Technology
Examiners
Available from: 2012-12-19 Created: 2012-12-19 Last updated: 2012-12-19Bibliographically approved

Open Access in DiVA

fulltext(426 kB)260 downloads
File information
File name FULLTEXT01.pdfFile size 426 kBChecksum SHA-512
652f53b5e3ca4458e882465f6fdfbf465cd5c6b7658c6cb26f6cdf16aa8b5fb2d8c61d6471b566fed93e47a09b883ae3af3ade90ce1b98d77ff7bc077e5b76ef
Type fulltextMimetype application/pdf

By organisation
School of Information and Communication Technology (ICT)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 260 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 644 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf