Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Complexation and sequestration of BMP-2 from an ECM mimetic hyaluronan gel for improved bone formation
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
(Biomaterials, Radboud University, Nijmegen Medical Centre, Nijmegen, Netherlands)
(Science for Life Laboratory, GE Healthcare, Stockholm, Sweden)
Show others and affiliations
2013 (English)In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, no 10, e78551Article in journal (Refereed) Published
Abstract [en]

Bone morphogenetic protein-2 (BMP-2) is considered a promising adjuvant for the treatment of skeletal non-union and spinal fusion. However, BMP-2 delivery in a conventional collagen scaffold necessitates a high dose to achieve an efficacious outcome. To lower its effective dose, we precomplexed BMP-2 with the glycosaminoglycans (GAGs) dermatan sulfate (DS) or heparin (HP), prior to loading it into a hyaluronic acid (HA) hydrogel. In vitro release studies showed that BMP-2 precomplexed with DS or HP had a prolonged delivery compared to without GAG. BMP-2-DS complexes achieved a slightly faster release in the first 24 h than HP; however, both delivered BMP-2 for an equal duration. Analysis of the kinetic interaction between BMP-2 and DS or HP showed that HP had approximately 10 times higher affinity for BMP-2 than DS, yet it equally stabilized the protein, as determined by alkaline phosphatase activity. Ectopic bone formation assays at subcutaneous sites in rats demonstrated that HA hydrogel-delivered BMP-2 precomplexed with GAG induced twice the volume of bone compared with BMP-2 delivered uncomplexed to GAG.

Place, publisher, year, edition, pages
2013. Vol. 8, no 10, e78551
Keyword [en]
Bone morphogenetic protein-2, Bone repair, BMP-2 release, Heparin, Dermatan sulfate
National Category
Orthopedics Biomaterials Science
Research subject
Orthopaedics; Engineering Science with specialization in Materials Science
Identifiers
URN: urn:nbn:se:uu:diva-188175DOI: 10.1371/journal.pone.0078551ISI: 000326034500093OAI: oai:DiVA.org:uu-188175DiVA: diva2:576639
Available from: 2012-12-13 Created: 2012-12-13 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Bone Enhancement with BMP-2 for Safe Clinical Translation
Open this publication in new window or tab >>Bone Enhancement with BMP-2 for Safe Clinical Translation
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Bone morphogenetic protein-2 (BMP-2) is considered a promising adjuvant for the treatment of bone regeneration. However, BMP-2 delivery in a conventional collagen scaffold needs a high dose to achieve an effective outcome. Moreover, such dosage may lead to serious side effects. The aim of the following thesis was to find clinically acceptable strategies reducing the required dose of BMP-2 by improving the delivery and optimizing the preclinical testing of the new approaches. In all the studies hyaluronic acid (HA) hydrogels was used as a carrier for BMP-2.

The HA hydrogel/BMP-2 construct was modified with bioactive matrix components in order to obtain an effective release of BMP-2 and an enhanced bone formation. The most promising were two strategies. In the first one, BMP-2, precomplexed with the glycosaminoglycans dermatan sulfate or heparin prior to loading it into HA hydrogel, protected and prolonged the delivery of the protein, resulting in twofold larger bone formation in comparison to non-complexed BMP-2. In the second strategy, the fibronectin fragment integrin-binding domain (FN) was covalently incorporated into HA hydrogel. The FN remarkably improved the capacity of the material to support the cells attachment and spreading, providing the formation of twice as much bone in comparison to non-functionalized HA hydrogel/BMP-2.

Furthermore, the importance of a proper design of the preclinical study for BMP-2 delivery systems was highlighted. Firstly, proper physicochemical handling of BMP-2 showed the improvement in further in vivo activity.  The use of glass storage vials and an acidic formulation buffer was superior to plastic surfaces and physiological pH. Secondly, while regenerative medicine strategy testing required the use of animal models that matched the research questions related to clinical translation, two new animal models were developed. The subperiosteal mandibular and calvarial models in rats were found to be minimally invasive, convenient and rapid solution for the evaluation of a broad range of approaches including bone augmentation, replacement and regeneration. Both models are primarily relevant for the initial testing of the injectable bone engineering constructs. 

Those clinically translatable approaches presented here could prove to be a powerful platform for a wider use of BMP-2 in orthopedic, plastic surgery and regenerative medicine research.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2013. 74 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1009
Keyword
Bone repair, Bone healing, Bone morhogenetic protein-2, Osteogenesis, Extracelular matrix, Hyaluronan, Animal model
National Category
Orthopedics Biomaterials Science
Research subject
Orthopaedics; Engineering Science with specialization in Materials Science
Identifiers
urn:nbn:se:uu:diva-188027 (URN)978-91-554-8572-6 (ISBN)
Public defence
2013-02-08, Museum Gustavianum - Auditorium Minus, Akademigatan 3, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2013-01-18 Created: 2012-12-12 Last updated: 2013-02-11Bibliographically approved

Open Access in DiVA

fulltext(1989 kB)339 downloads
File information
File name FULLTEXT01.pdfFile size 1989 kBChecksum SHA-512
e454f2811b31f650a0f8b20c6b92a8c10d45bf58114e5f9158102dfc7dac59f226ba0a5212121db8c35798a50d9516733a51166afd00c4f2d16e284b20be51cd
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Hilborn, Jöns
By organisation
Polymer ChemistryScience for Life Laboratory, SciLifeLab
In the same journal
PLoS ONE
OrthopedicsBiomaterials Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 339 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 977 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf