Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Heat Exchanger Design for Solar Gas-Turbine Power Plant
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
2012 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

The aim of this project is to select appropriate heat exchangers out of available gas-gas heat exchangers for used in a proposed power plant. The heat exchangers are to be used in the power plant for the purposes of waste heat recovery, recuperation and intercooling.In selecting an optimum heat exchanger for use, the PCHE was identified as the best candidate for waste heat recovery and recuperation. In order to ascertain the viability of this assertion the PCHE was designed and a 1D modeling performed in MATLAB using the conditions that the heat exchanger for waste heat recovery would be subjected to. The choice of using the conditions that the waste recovery heat exchanger would be subjected to was due to the fact that, it is the heat exchanger that would be subjected to much harsh conditions (thus higher temperatures of up to 650 ºC). The PFHE was also designed and similarly a 1D modeling performed in MATLAB. The decision to consider the design of the PFHE was to offer a platform to compare and contrast the performance of the PCHE in order to have a strong basis for deciding on whether to stick to the choice for the PCHE or otherwise.The results obtained from the 1D modeling of the design of the heat exchangers indicates that the PCHE performed better with regards to pressure drops across the heat exchangers (with values of 1.17 and 2.47 % for the cold and hot sides respectively), compactness (with a value of 1300 m2/m3 for the PCHE compared to the 855 m2/m3 recorded from the PFHE), however the PFHE recorded higher heat transfer coefficients, and a subsequent higher overall transfer coefficient.Results obtained from the simulation of the 3D model buttress the decision to employ the PCHE as heat exchangers to be used for waste heat recovery and recuperation as a wise one, with an effectiveness of 0.94 as against the design value of 0.90, and with pressure drops as desired of the optimum heat exchanger.

Place, publisher, year, edition, pages
2012. , 74 p.
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-107277OAI: oai:DiVA.org:kth-107277DiVA: diva2:575441
Presentation
2012-11-27, M274, Brinellvägen 68, Stockholm, 10:00 (English)
Uppsok
Technology
Supervisors
Examiners
Available from: 2013-01-29 Created: 2012-12-10 Last updated: 2013-01-29Bibliographically approved

Open Access in DiVA

fulltext(2357 kB)19173 downloads
File information
File name FULLTEXT01.pdfFile size 2357 kBChecksum SHA-512
492fcafe291a279e7024f1682eaa1e7632a3947425b318fb0efae5221248f0edfbcd4dcd81fcb83b998d5c33dfdf37e11c766ba561c9916512905076495ee209
Type fulltextMimetype application/pdf

By organisation
Energy Technology
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 19173 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 512 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf