Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermal stability of Al1−xInxN (0 0 0 1) throughout the compositional range as investigated during in situ thermal annealing in a scanning transmission electron microscope
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0003-3203-7935
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-2837-3656
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Show others and affiliations
2013 (English)In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 61, no 12, 4683-4688 p.Article in journal (Refereed) Published
Abstract [en]

The thermal stability of Al1−xInxN (0 ⩽ ⩽ 1) layers was investigated by scanning transmission electron microscopy (STEM) imaging, electron diffraction, and monochromated valence electron energy loss spectroscopy during in situ annealing from 750 to 950 °C. The results show two distinct decomposition paths for the layers richest in In (Al0.28In0.72N and Al0.41In0.59N) that independently lead to transformation of the layers into an In-deficient, nanocrystalline and a porous structure. The In-richest layer (Al0.28In0.72N) decomposes at 750 °C, where the decomposition process is initiated by In forming at grain boundaries and is characterized by an activation energy of 0.62 eV. The loss of In from the Al0.41In0.59N layer was initiated at 800 °C through continuous desorption. No In clusters were observed during this decomposition process, which is characterized by an activation energy of 1.95 eV. Finally, layers richest in Al (Al0.82In0.18N and Al0.71In0.29N) were found to resist thermal annealing, although the initial stages of decomposition were observed for the Al0.71In0.29N layer.

Place, publisher, year, edition, pages
Elsevier, 2013. Vol. 61, no 12, 4683-4688 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-85904DOI: 10.1016/j.actamat.2013.04.043ISI: 000321086100036OAI: oai:DiVA.org:liu-85904DiVA: diva2:573688
Available from: 2012-12-03 Created: 2012-12-03 Last updated: 2017-12-07Bibliographically approved
In thesis
1. Valence Electron Energy Loss Spectroscopy of III-Nitride Semiconductors
Open this publication in new window or tab >>Valence Electron Energy Loss Spectroscopy of III-Nitride Semiconductors
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This doctorate thesis covers both experimental and theoretical investigations of the optical responses of the group III-nitrides (AlN, GaN, InN) and their ternary alloys. The goal of this research has been to explore the usefulness of valence electron energy loss spectroscopy (VEELS) for materials characterization of group III-nitride semiconductors at the nanoscale. The experiments are based on the evaluation of the bulk plasmon characteristics in the low energy loss part of the EEL spectrum since it is highly dependent on the material’s composition and strain. This method offers advantages as being fast, reliable, and sensitive. VEELS characterization results were corroborated with other experimental methods like X-ray diffraction and Rutherford backscattering spectrometry as well as full-potential calculations (Wien2k). Investigated III-nitride structures were grown using magnetron sputtering epitaxy and metal organic chemical vapor deposition techniques.

Initially, it was demonstrated that EELS in the valence region is a powerful method for a fast compositional analysis of the Al1-xInxN (0≤x≤1) system. The bulk plasmon energy follows a linear relation with respect to the lattice parameter and composition in Al1-xInxN layers. Furthermore, the effect of strain on valence EELS was investigated. It was experimentally determined that the AlN bulk plasmon peak experiences a shift of 0.156 eV per 1% volume change at constant composition. The experimental results were corroborated by full-potential calculations, which showed that the bulk plasmon peak position varies nearly linearly with the unit-cell volume, at least up to 3% volume change.

Employing the bulk plasmon energy loss, compositional characterization was also applied to confined structures, such as nanorods and quantum wells (QWs). Compositional profiling of spontaneously formed AlInN nanorods with varying In concentration was realized in cross-sectional and plan-view geometries. It was established that the structures exhibit a core-shell structure, where the In concentration in the core is higher than in the shell. The growth of InGaN/GaN multiple QWs with respect to composition and interface homogeneities was investigated. It was found that at certain compositions and thicknesses of QWs, where phase separation does not occur due to spinodal decomposition. Instead, QWs develop quantum dot like features inside the well as a consequence of Stranski-Krastanov-type growth mode, and delayed In incorporation into the structure.

The thermal stability and degradation mechanisms of Al1-xInxN (0≤x≤1) films with different In contents, stacked in a multilayer sample, and different periodicity Al1-xInxN/AlN multilayer films, was investigated by performing a thermal annealing in combination with VEELS mapping in-situ. It was concluded that the In content in the Al1-xInxN layer determines the thermal stability and decomposition path. Finally, the phase separation by spinodal decomposition of different periodicity AlInN/AlN layers, with a starting composition inside the miscibility gap, was explored.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. 74 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1488
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-85907 (URN)978-91-7519-746-3 (ISBN)
Public defence
2012-12-14, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2012-12-03 Created: 2012-12-03 Last updated: 2016-08-31Bibliographically approved

Open Access in DiVA

fulltext(1182 kB)1297 downloads
File information
File name FULLTEXT01.pdfFile size 1182 kBChecksum SHA-512
564babe5a4500703137803cf8535c4f0761fa9475b0ce6b82abfa416871996097f551c1a8318a368ae1cf4a3c68cd797d3087e43b7e30fecdf823cfee0803b55
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Palisaitis, JustinasHsiao, Ching-LienHultman, LarsBirch, JensPersson, Per

Search in DiVA

By author/editor
Palisaitis, JustinasHsiao, Ching-LienHultman, LarsBirch, JensPersson, Per
By organisation
Thin Film PhysicsThe Institute of Technology
In the same journal
Acta Materialia
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 1297 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 426 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf