Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
System identification and control for general anesthesia based on parsimonious Wiener models
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
2012 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The effect of anesthetics in the human body is usually described by Wiener models. The high number of patient-dependent parameters in the standard models, the poor excitatory pattern of the input signals (administered anesthetics) and the small amount of available input-output data make application of system identification strategies difficult.

The idea behind this thesis is that, by reducing the number of parameters to describe the system, improved results may be achieved when system identification algorithms and control strategies based on those models are designed. The choice of the appropriate number of parameters matches the parsimony principle of system identification.

The three first papers in this thesis present Wiener models with a reduced number of parameters for the neuromuscular blockade and the depth of anesthesia. Batch and recursive system identification algorithms are presented. Taking advantage of the small number of continuous time model parameters, adaptive controllers are proposed in the two last papers. The controller structure combines an inversion of the static nonlinearity of the Wiener model with a linear controller for the exactly linearized system, using the parameter estimates obtained recursively by an extended Kalman filter. The performance of the adaptive nonlinear controllers is tested in a database of realistic patients with good results.

Place, publisher, year, edition, pages
Uppsala University, 2012.
Series
Information technology licentiate theses: Licentiate theses from the Department of Information Technology, ISSN 1404-5117 ; 2012-007
National Category
Control Engineering
Research subject
Electrical Engineering with specialization in Automatic Control
Identifiers
URN: urn:nbn:se:uu:diva-185427OAI: oai:DiVA.org:uu-185427DiVA: diva2:571733
Supervisors
Available from: 2012-10-17 Created: 2012-11-23 Last updated: 2017-08-31Bibliographically approved

Open Access in DiVA

fulltext(2761 kB)