Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Regression då data utgörs av urval av ranger
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
2012 (Swedish)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [sv]

För alpina skidåkare mäter man prestationer i så kallad FIS-ranking. Vi undersöker några metoder för hur man kan analysera data där responsen består av ranger som dessa. Vid situationer då responsdata utgörs av urval av ranger finns ingen självklar analysmetod. Det vi undersöker är skillnaderna vid användandet av olika regressionsanpassningar så som linjär, logistisk och ordinal logistisk regression för att analysera data av denna typ. Vidare används bootstrap för att bilda konfidensintervall. Det visar sig att för våra datamaterial ger metoderna liknande resultat när det gäller att hitta betydelsefulla förklarande variabler. Man kan därmed utgående från denna undersökning, inte se några skäl till varför man ska använda de mer avancerade modellerna.

Abstract [en]

Alpine skiers measure their performance in FIS ranking. We will investigate some methods on how to analyze data where response data is based on ranks like this. In situations where response data is based on ranks there is no obvious method of analysis. Here, we examine differences in the use of linear, logistic and ordinal logistic regression to analyze data of this type. Bootstrap is used to make confidence intervals. For our data these methods give similar results when it comes to finding important explanatory variables. Based on this survey we cannot see any reason why one should use the more advanced models.

Place, publisher, year, edition, pages
2012. , 41 p.
Keyword [en]
Ranks, Linear regression, Logistic regression, Ordinal logistic regression, Bootstrap
Keyword [sv]
Ranger, Linjär regression, Logistisk regression, Ordinal logistisk regression, Bootsrap
National Category
Mathematics Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:umu:diva-60664OAI: oai:DiVA.org:umu-60664DiVA: diva2:569981
Presentation
(Swedish)
Uppsok
Physics, Chemistry, Mathematics
Available from: 2013-02-27 Created: 2012-10-22 Last updated: 2013-02-27Bibliographically approved

Open Access in DiVA

Regression då data utgörs av urval av ranger(627 kB)336 downloads
File information
File name FULLTEXT01.pdfFile size 627 kBChecksum SHA-512
092f8c3f4f06c0be75471a4d133c96982c82aaadabaedef00b25b8cc38ae171f5bb7cc547a5244128ea8b5186eb57740e0243a0d4b5e4c03498f6a4b05a222b0
Type fulltextMimetype application/pdf

By organisation
Department of Mathematics and Mathematical Statistics
MathematicsProbability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 336 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 442 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf