Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Composite Manufacturing: How Improvement Work Might Lead to Renewed Product Validation
Linköping University, Department of Management and Engineering, Manufacturing Engineering. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-8015-3039
Linköping University, Department of Management and Engineering, Manufacturing Engineering. Linköping University, The Institute of Technology.ORCID iD: 0000-0003-1646-5817
2012 (English)In: Proceedings of the 5th International Swedish Production Symposium / [ed] Mats Björkman, 2012, 505-513 p.Conference paper, Published paper (Refereed)
Abstract [en]

High-performance polymer composites are mainly used in applications where the benefits of high strength and low weight justify the high material and manufacturing costs. Many of these applications are found today in the aerospace, space and defense industries. Most of today’s commonly used manufacturing methods within this area are highly labor intensive. Furthermore, the quality requirements from the customers require a high level of process control. The purpose of this paper is to explore how changes that are introduced in order to improve productivity in a manufacturing system are managed, particularly with regard to who takes the decision to implement a change and how a change is validated. The study is based on qualitative interviews performed at several companies that manufacture composite components for the aerospace, space and defense sectors. The findings show that the responsibility for deciding to implement a change and the need for validating it are based on many diverse and interconnected factors. Therefore, it is difficult to construct guidelines for early assessment of the scope and cost of a proposed change. Hence each individual change request must be evaluated on its own. The study also shows that the validation process can be adapted to a level that is based on the type of change. In addition, it highlights that control over process parameters in manufacturing is essential.

Place, publisher, year, edition, pages
2012. 505-513 p.
Keyword [en]
composite manufacturing, validation, change request management
National Category
Production Engineering, Human Work Science and Ergonomics
Identifiers
URN: urn:nbn:se:liu:diva-85268ISBN: 978-91-7519-752-4 (print)OAI: oai:DiVA.org:liu-85268DiVA: diva2:567782
Conference
5th International Swedish Production Symposium (SPS 2012), 6-8 November 2012, Linköping, Sweden
Available from: 2012-11-14 Created: 2012-11-14 Last updated: 2017-05-17
In thesis
1. Enabling Automation of Composite Manufacturing through the Use of Off-The-Shelf Solutions
Open this publication in new window or tab >>Enabling Automation of Composite Manufacturing through the Use of Off-The-Shelf Solutions
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Composite materials offer an appealing combination of low weight and high strength that is especially sought after in high-performance applications. The use of composite materials has and is continuing to increase, and the use of the material has been shown to provide substantial weight savings in for example aircraft design. With an increased use of composite materials follows an increased demand for cost-efficient manufacturing methods.

Composite products are in many cases manufactured either by manual operations or by the use of complex automated solutions associated with high investment costs. The objective for this research is to explore an approach to develop automated composite manufacturing based on commercially available off-the-shelf solutions as an alternative to the existing automated solutions for composite manufacturing.

The research, which was carried out in collaboration with industrial partners within the aerospace sector, is based on a demonstrator-centered research approach. Three conceptual demonstrators, focusing on three different manufacturing methods and a number of physical demonstrators, are used to show that off-the-shelf solutions can be used for automated manufacturing of composite products.

Two aspects that affect if it is possible to use off-the-shelf solutions for automated composite manufacturing are the rigorous quality standards used by the aerospace industry and the great variety in product properties and material properties that is associated with composite manufacturing.

The advantages in using off-the-shelf solutions has shown to be that the solutions generally are associated with low investments and that published information about the solutions, and the solutions themselves, is generally available for evaluation and testing. When working with the demonstrators it has been shown to be useful to break down a manufacturing system into basic tasks and consider off-the-shelf solutions for each particular task. This approach facilitates the search for a suitable off-the-shelf solution to solve a particular task. However, each of the separate tasks can affect other areas of the manufacturing system, and an overall systems perspective is required to find solutions that are compatible with the entire manufacturing system.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 87 p.
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1692
National Category
Production Engineering, Human Work Science and Ergonomics Materials Engineering
Identifiers
urn:nbn:se:liu:diva-111936 (URN)10.3384/lic.diva-111936 (DOI)978-91-7519-183-6 (ISBN)
Presentation
2014-11-20, C3, C-huset, Campus Valla, Linköpings universitet, Linköping, 10:15 (Swedish)
Opponent
Supervisors
Available from: 2014-11-10 Created: 2014-11-10 Last updated: 2016-09-26Bibliographically approved
2. Automated layup and forming of prepreg laminates
Open this publication in new window or tab >>Automated layup and forming of prepreg laminates
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Composite materials like carbon fiber-reinforced polymers (CFRPs) present highly appealing material properties, as they can combine high strength with low weight. In aerospace applications, these properties help to realize lightweight designs that can reduce fuel consumption. Within the aerospace industry, the use of these types of materials has increased drastically with the introduction of a new generation of commercial aircraft. This increased use of CFRP drives a need to develop more rational manufacturing methods.

For aerospace applications, CFRP products are commonly manufactured from a material called prepreg, which consists of carbon fibers impregnated with uncured polymer resin. There are two dominant manufacturing technologies for automated manufacturing using prepreg, automated tape layup and automated fiber placement. These two technologies are not suitable for all types of products, either due to technical limitations or a combination of high investment costs and low productivity. Automation alternatives to the two dominant technologies have been attempted, but have so far had limited impact. Due to the lack of automation alternatives, manual manufacturing methods are commonly employed for the manufacturing of complex-shaped products in low to medium manufacturing volumes.

The research presented in this thesis aims to explore how automated manufacturing systems for the manufacturing of complex CFRP products made from prepreg can be designed so that they meet the needs and requirements of the aerospace industry, and are suitable for low to medium production volumes. In order to explore the area, a demonstrator-centered research approach has been employed. A number of demonstrators, in the form of automated manufacturing cells, have been designed and tested with industrial and research partners. The demonstrators have been used to identify key methods and technologies that enable this type of manufacturing, and to analyze some of these methods and technologies in detail. The demonstrators have also been used to map challenges that affect the development of enabling methods and technologies.

Automated manufacturing of products with complex shapes can be simplified by dividing the process into two steps. Thin layers of prepreg are laid up on top of each other to form flat laminates that are formed to the desired shape in subsequent forming operations. The key methods and technologies required to automate such a system are methods and technologies for automated prepreg layup, the automated removal of backing paper and the forming of complex shapes. The main challenges are the low structural rigidity and tacky nature of prepreg materials, the extensive quality requirements in the aerospace industry and the need for the systems to handle a wide array of prepreg shapes.

The demonstrators show that it is possible to automate the manufacturing of complexshaped products using automated layup and forming of prepreg laminates. Tests using the demonstrators indicate that it is possible to meet the quality requirements that apply to manual manufacturing of similar products.

Abstract [sv]

Polymera kolfiberkompositer erbjuder en eftertraktad kombination av låg vikt och högstyrka som kan bidra till lättviktskonstruktioner som t.ex. kan leda till bränslebesparingarför passagerarflygplan. Inom flygindustrin har användningen av denna materialtyp ökatkraftigt med introduktionen av en ny generation flygplan som till mer än hälften består avkompositmaterial. Den ökade användningen av polymera fiberkompositer medför ett ökatbehov av rationella produktionsmetoder.

Inom flygindustrin tillverkas ofta polymera kolfiberkompositprodukter av så kallatprepreg-material som består av kolfibrer impregnerade med en plast. Det finns tvåhuvudalternativ för automatisk tillverkning av prepreg-baserade produkter, automatisktejpläggning eller automatisk fiberplacering. De två alternativen har tekniskabegränsningar och är förknippade med mycket höga investeringskostnader vilket gör attdet finns produkter som de inte kan tillverka eller som inte är kostnadseffektiva atttillverka med dessa två metoder. Andra automatiska alternativ har utvecklats, men har intenått någon större industriell implementering. Bristen på automatiseradetillverkningsalternativ leder till att produkter med komplex form, och som tillverkas i småoch medelstora volymer ofta tillverkas manuellt.

Forskningen som presenteras i denna avhandling syftar till att undersöka hur automatiskatillverkningsceller för tillverkning av polymera kolfiberkompositprodukter med komplexform kan utformas så att de uppfyller de krav som gäller för tillverkningen av produkterför flygindustrin och är lämpliga för låga och medelhöga tillverkningsvolymer. Endemonstratorcentrerad forskningsmetod har använt för att utforska området och ett flertaldemonstratorer har byggts och testats tillsammans med partners från industrin och andraforskningsorganisationer. Demonstratorerna, som är kompletta tillverkningsceller, haranvänts för att identifiera metoder och utrustning som är nödvändiga att utveckla för attautomatisera denna typ av tillverkning och för att undersöka några metoder och tillhörandeutrustning mer i detalj. Demonstratorerna har också använts för att kartlägga faktorer sompåverkar hur metoder och utrustning utformas.

Automatisk tillverkning av produkter med komplex form kan förenklas genom att delaupp tillverkningen i två steg. Först läggs prepreg-ark ihop till ett laminat som formas tillproduktens form i ett efterföljande steg. För att automatisera denna typ av tillverkningbehöver nyckelmetoder och nyckelutrustning för hopläggning av laminat, borttagning avskyddspapper samt formning av laminat till komplexa former utvecklas. Viktiga faktorersom påverkar utformningen av tillverkningscellerna är prepreg-materialens låga styvhetoch klibbiga yta, de höga kvalitetskrav som gäller för tillverkning avflygplanskomponenter samt att systemen måste hantera en stor mängd olikformadeprepreg-ark. Demonstratorerna visar att det är möjligt att automatisera tillverkningen avpolymera kolfiberprodukter med komplex form genom automatisk uppläggning ochformning av plana laminat. Tester med demonstratorerna pekar på att det är möjligt atttillverka produkterna i enlighet med de kvalitetskrav som finns för manuell tillverkningav liknande produkter.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2017. 131 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1858
National Category
Production Engineering, Human Work Science and Ergonomics Aerospace Engineering Composite Science and Engineering
Identifiers
urn:nbn:se:liu:diva-137488 (URN)10.3384/diss.diva-137488 (DOI)978-91-7685-510-2 (ISBN)
Public defence
2017-06-16, C3, C-huset, Campus Valla, Linköping, 10:15 (Swedish)
Opponent
Supervisors
Available from: 2017-05-17 Created: 2017-05-17 Last updated: 2017-05-17Bibliographically approved

Open Access in DiVA

fulltext(390 kB)687 downloads
File information
File name FULLTEXT01.pdfFile size 390 kBChecksum SHA-512
2a5cf7e4217012c41ce9fc17cacdf1911b65dd4ac3bf42b494c598a9a7b32984a29fc3bb7a2c80b9c29cca51f33d899378463e547642994ed6ab508e2a725d39
Type fulltextMimetype application/pdf

Authority records BETA

Björnsson, AndreasJohansen, Kerstin

Search in DiVA

By author/editor
Björnsson, AndreasJohansen, Kerstin
By organisation
Manufacturing EngineeringThe Institute of Technology
Production Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar
Total: 687 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 504 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf