Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental Comparison of Different Gate-Driver Configurations for Parallel-Connection of Normally-ON SiC JFETs
KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
Acreo AB.
KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.ORCID iD: 0000-0001-7922-3407
Show others and affiliations
2012 (English)In: 7th International Power Electronics and Motion Control Conference (IPEMC), 2012, IEEE conference proceedings, 2012, 16-22 p.Conference paper, Oral presentation only (Refereed)
Abstract [en]

Due to the low current ratings of the currently available silicon carbide (SiC) switches they cannot be employed in high-power converters. Thus, it is necessary to parallel-connect several switches in order to reach higher current ratings. This paper presents an investigation of parallel-connected normally-on SiC junction field effect transistors. There are four crucial parameters affecting the effectiveness of the parallel-connected switches. However, the pinch-off voltage and the reverse breakdown voltage of the gates seem to be the most important parameters which affect the switching performance of the devices. In particular, the spread in these two parameters might affect the stable off-state operation of the switches. The switching performance and the switching losses of a pair of parallel-connected devices having different reverse breakdown voltages of the gates is investigated by employing three different gate-driver configurations. It is experimentally shown that using a single gate-driver circuit the switching performance of the parallel-connected devices is almost identical, while the total switching losses are lower compared to the other two configurations.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2012. 16-22 p.
Keyword [en]
JFETs, Junctions, Logic gates, Resistors, Silicon carbide, Switches, Transient analysis
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Järnvägsgruppen - Elsystem
Identifiers
URN: urn:nbn:se:kth:diva-104800DOI: 10.1109/IPEMC.2012.6258832Scopus ID: 2-s2.0-84866787241ISBN: 978-1-4577-2085-7 (print)OAI: oai:DiVA.org:kth-104800DiVA: diva2:567430
Conference
ECCE Asia 2012 - 7th International Power Electronics and Motion Control Conference,Harbin, China,2-5 June 2012
Note

QC 20121116

Available from: 2012-11-16 Created: 2012-11-13 Last updated: 2016-11-24Bibliographically approved
In thesis
1. On Gate Drivers and Applications of Normally-ON SiC JFETs
Open this publication in new window or tab >>On Gate Drivers and Applications of Normally-ON SiC JFETs
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, various issues regarding normally-ON silicon carbide (SiC)Junction Field-Effect Transistors (JFETs) are treated. Silicon carbide powersemiconductor devices are able to operate at higher switching frequencies,higher efficiencies, and higher temperatures compared to silicon counterparts.From a system perspective, these three advantages of silicon carbide can determinethe three possible design directions: high efficiency, high switchingfrequency, and high temperature.The structure designs of the commercially-available SiC power transistorsalong with a variety of macroscopic characteristics are presented. Apart fromthe common design and performance problems, each of these devices suffersfrom different issues and challenges which must be dealt with in order to pavethe way for mass production. Moreover, the expected characteristics of thefuture silicon carbide devices are briefly discussed. The presented investigationreveals that, from the system point-of-view, the normally-ON JFET isone of the most challenging silicon carbide devices. There are basically twoJFET designs which were proposed during the last years and they are bothconsidered.The state-of-the-art gate driver for normally-ON SiC JFETs, which wasproposed a few years ago is briefly described. Using this gate driver, theswitching performance of both Junction Field-Effect Transistor designs wasexperimentally investigated.Considering the current development state of the available normally-ONSiC JFETs, the only way to reach higher current rating is to parallel-connecteither single-chip discrete devices or to build multichip modules. Four deviceparameters as well as the stray inductances of the circuit layout might affectthe feasibility of parallel connection. The static and dynamic performance ofvarious combinations of parallel-connected normally-ON JFETs were experimentallyinvestigated using two different gate-driver configurations.A self-powered gate driver for normally-ON SiC JFETs, which is basicallya circuit solution to the “normally-ON problem” is also shown. This gatedriver is both able to turn OFF the shoot-through current during the startupprocess, while it also supplies the steady-state power to the gate-drivecircuit. From experiments, it has been shown that in a half-bridge converterconsisting of normally-ON SiC JFETs, the shoot-through current is turnedOFF within approximately 20 μs.Last but not least, the potential benefits of employing normally-ON SiCJFETs in future power electronics applications is also presented. In particular,it has been shown that using normally-ON JFETs efficiencies equal 99.8% and99.6% might be achieved for a 350 MW modular multilevel converter and a40 kVA three-phase two-level voltage source converter, respectively.Conclusions and suggestions for future work are given in the last chapterof this thesis.

Abstract [sv]

I denna avhandling behandlas olika aspekter av normally–ON junction–field–effect–transistorer (JFETar) baserade på kiselkarbid (SiC). Effekthalvledarkomponenteri SiC kan arbeta vid högre switchfrekvens, högre verkningsgradoch högre temperatur än motsvarigheterna i kisel. Ur ett systemperspektivkan de tre nämnda fördelarna användas i omvandlarkonstruktionen för attuppnå antingen hög verkningsgrad, hög switchfrekvens eller hög temperaturtålighet.Såväl halvledarstrukturen som de makroskopiska egenskaperna för kommersiellttillgängliga SiC–transistorer presenteras. Bortsett från de vanligakonstruktions–och prestandaproblemen lider de olika komponenterna av ettantal tillkortakommanden som måste övervinnas för att bana väg för massproduktion.Även framtida SiC–komponenter diskuteras.Ur ett systemperspektiv är normally-ON JFETen en av de mest utmanandeSiC-komponenterna. De två varianter av denna komponent som varittillgängliga de senaste åren har båda avhandlats.State–of–the–art–drivdonet för normally-ON JFETar som presenteradesför några år sedan beskrivs i korthet. Med detta drivdon undersöks switchegenskapernaför båda JFET-typerna experimentellt.Vid beaktande av det aktuella utvecklingsstadiet av de tillgängliga normally–ON JFETarna i SiC, är det möjligt att uppnå höga märkströmmar endastom ett antal single–chip–komponenter parallellkopplas eller om multichipmodulerbyggs. Fyra komponentparametrar samt strö-induktanser för kretsenkan förutses påverka parallellkopplingen. De statiska och dynamiska egenskapernaför olika kombinationer av parallellkopplade normally-ON JFETarundersöks experimentellt med två olika gate–drivdonskonfigurationer.Ett självdrivande gate-drivdon för normally-ON JFETar presenteras också.Drivdonet är en kretslösning till “normally–ON–problemet”. Detta gatedrivdonkan både stänga av kortslutningsströmmen vid uppstart och tillhandahållaströmförsörjning vid normal drift. Med hjälp av en halvbrygga medkiselkarbidbaserade normally–ON JFETar har det visats att kortslutningsströmmenkan stängas av inom cirka 20 μs.Sist, men inte minst, presenteras de potentiella fördelarna med användningenav SiC-baserade normally-ON JFETar i framtida effektelektroniskatillämpningar. Speciellt visas att verkningsgrader av 99.8% respektive 99.5%kan uppnås i fallet av en 350 MW modular multilevel converter och i en40 kVA tvånivåväxelriktare. Sista kaplitet beskriver slutsatser och föreslagetframtida arbete.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. x, 102 p.
Series
Trita-EE, ISSN 1653-5146 ; 2013:28
Keyword
Silicon Carbide, Normally-ON Junction Field-Effect Transistors (JFETs), Gate-Drive Circuits, Protection circuits, High-Efficiency Converters.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Järnvägsgruppen - Elsystem
Identifiers
urn:nbn:se:kth:diva-122679 (URN)978-91-7501-799-0 (ISBN)
Public defence
2013-06-14, Kollegiesalen, Brinellvägen 8, KTH, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20130527

Available from: 2013-05-27 Created: 2013-05-26 Last updated: 2013-05-27Bibliographically approved

Open Access in DiVA

fulltext(459 kB)281 downloads
File information
File name FULLTEXT02.pdfFile size 459 kBChecksum SHA-512
32d9bc40c05b0a3e9a385ad3e1bbfaf27514351aa549ecda0d71924718687729b2e482ee0a0a1f98a1201826bff27ee2d6f56f021224e1fd51edef47834a0fcd
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusIEEEXplore

Search in DiVA

By author/editor
Peftitsis, DimosthenisRabkowski, JacekTolstoy, GeorgNee, Hans-Peter
By organisation
Electrical Energy Conversion
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 281 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 122 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf