Change search
ReferencesLink to record
Permanent link

Direct link
Applications of p-adic Numbers to well understood Quantum Mechanics: With a focus on Weyl Systems and the Harmonic Oscillator
Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, Department of Mathematical Sciences.
2012 (English)MasteroppgaveStudent thesis
Abstract [en]

In this thesis we look at how it is possible to construct models in quantum mechanics by using p-adic numbers. First we look closely at different quantum mechanical models using the real numbers, as it is necessary to understand them well before moving on to p-adic numbers. The most promising model, where Weyl systems are used, is studied in detail. Here time translation is not generated by the Hamiltonian, but constructed directly as an operator possessing some fundamental structure in relation to the classical dynamics. Then we develop the relevant theory of the field of p-adic numbers Qp , with a focus on the properties of Qp as a locally compact abelian group. Here we present alternative proofs to those found in the literature. In particular, we give an independent proof of the selfduality of Qp. In the last chapters we look at some models using Qp . We generalize the idea of Weyl systems from real to p-adic numbers, and we discuss the physical implications. When using Weyl systems, time is p-adic. We also produce MatLab algorithms for numerical computations in connection with approximations of p-adic models by finite models.

Place, publisher, year, edition, pages
Institutt for matematiske fag , 2012. , 82 p.
Keyword [no]
ntnudaim:7587, MTFYMA fysikk og matematikk, Industriell matematikk
URN: urn:nbn:no:ntnu:diva-19366Local ID: ntnudaim:7587OAI: diva2:566972
Available from: 2012-11-11 Created: 2012-11-10 Last updated: 2013-06-06Bibliographically approved

Open Access in DiVA

fulltext(1857 kB)376 downloads
File information
File name FULLTEXT01.pdfFile size 1857 kBChecksum SHA-512
Type fulltextMimetype application/pdf
cover(194 kB)32 downloads
File information
File name COVER01.pdfFile size 194 kBChecksum SHA-512
Type coverMimetype application/pdf

By organisation
Department of Mathematical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 376 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 80 hits
ReferencesLink to record
Permanent link

Direct link