CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt155",{id:"formSmash:upper:j_idt155",widgetVar:"widget_formSmash_upper_j_idt155",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt156_j_idt159",{id:"formSmash:upper:j_idt156:j_idt159",widgetVar:"widget_formSmash_upper_j_idt156_j_idt159",target:"formSmash:upper:j_idt156:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

The Einstein Field Equations: on semi-Riemannian manifolds, and the Schwarzschild solutionPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2012 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
##### Abstract [en]

##### Place, publisher, year, edition, pages

2012.
##### Keyword [en]

Differential geometry, semi-Riemannian manifolds, Einstein field equations
##### National Category

Mathematics Other Mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-61321OAI: oai:DiVA.org:umu-61321DiVA: diva2:566736
##### Educational program

Bachelor of Science in Physics and Applied Mathematics
##### Uppsok

Physics, Chemistry, Mathematics

#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt505",{id:"formSmash:j_idt505",widgetVar:"widget_formSmash_j_idt505",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt511",{id:"formSmash:j_idt511",widgetVar:"widget_formSmash_j_idt511",multiple:true});
##### Examiners

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt517",{id:"formSmash:j_idt517",widgetVar:"widget_formSmash_j_idt517",multiple:true});
Available from: 2013-02-27 Created: 2012-11-09 Last updated: 2015-06-09Bibliographically approved

Semi-Riemannian manifolds is a subject popular in physics, with applications particularly to modern gravitational theory and electrodynamics. Semi-Riemannian geometry is a branch of differential geometry, similar to Riemannian geometry. In fact, Riemannian geometry is a special case of semi-Riemannian geometry where the scalar product of nonzero vectors is only allowed to be positive. This essay approaches the subject from a mathematical perspective, proving some of the main theorems of semi-Riemannian geometry such as the existence and uniqueness of the covariant derivative of Levi-Civita connection, and some properties of the curvature tensor. Finally, this essay aims to deal with the physical applications of semi-Riemannian geometry. In it, two key theorems are proven - the equivalenceof the Einstein field equations, the foundation of modern gravitational physics, and the Schwarzschild solution to the Einstein field equations. Examples of applications of these theorems are presented.

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1232",{id:"formSmash:j_idt1232",widgetVar:"widget_formSmash_j_idt1232",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1285",{id:"formSmash:lower:j_idt1285",widgetVar:"widget_formSmash_lower_j_idt1285",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1286_j_idt1288",{id:"formSmash:lower:j_idt1286:j_idt1288",widgetVar:"widget_formSmash_lower_j_idt1286_j_idt1288",target:"formSmash:lower:j_idt1286:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});