Change search
ReferencesLink to record
Permanent link

Direct link
Constrained Hydrogel swelling in Biological Sensors: A Finite Element Method Approach
Norwegian University of Science and Technology, Faculty of Natural Sciences and Technology, Department of Physics.
2012 (English)MasteroppgaveStudent thesis
Abstract [en]

Material models has been developed for anionic and/or cationic hydrogels, with a simulation framework implemented in MATLAB and the finite element software ABAQUS. The geometry of the simulations is a hemispheroidal hydrogel, divided into a core with a shell, covalently attached to an optical fiber. The material models have been used to estimate the chemical parameters of poly-acrylamide hydrogels containing anionic or cationic monomer groups. Simulations comparing free and constrained swelling has been conducted in order to determine the effect of the geometrical constriction to the optical fiber. Constrained hydrogel swelling featuring shells with different properties than the core was also investigated. The aim of the study was to validate the material models and examine the effects of geometrical constrictions together with shell-impregnation. The anionic material model was shown to reproduce experimental swelling data, while the cationic material model only reproduced the data for ionic strength greater than 100 mM. Restricting the hydrogel to an optical fiber resulted in decreased change in volume and an increase in the axial swelling. The model was able to reproduce reported reduction in the swelling for an impregnated anionic hydrogel by using a neutral shell in the simulations, but failed to recreate the shape of the swelling curve. With the reduction of swelling as a basis, a new method for estimating thin-layer properties has been developed.

Place, publisher, year, edition, pages
Institutt for fysikk , 2012. , 77 p.
Keyword [no]
ntnudaim:7703, MTFYMA fysikk og matematikk, Biofysikk og medisinsk teknologi
URN: urn:nbn:no:ntnu:diva-19103Local ID: ntnudaim:7703OAI: diva2:566477
Available from: 2012-11-08 Created: 2012-11-08

Open Access in DiVA

fulltext(2117 kB)200 downloads
File information
File name FULLTEXT01.pdfFile size 2117 kBChecksum SHA-512
Type fulltextMimetype application/pdf
cover(226 kB)18 downloads
File information
File name COVER01.pdfFile size 226 kBChecksum SHA-512
Type coverMimetype application/pdf

By organisation
Department of Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 200 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 72 hits
ReferencesLink to record
Permanent link

Direct link