Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electromagnetic dispersion modeling and sensitivity analysis for HVDC power cables
Linnaeus University, Faculty of Science and Engineering, School of Computer Science, Physics and Mathematics.
Linnaeus University, Faculty of Science and Engineering, School of Computer Science, Physics and Mathematics.ORCID iD: 0000-0002-7018-6248
Linnaeus University, Faculty of Science and Engineering, School of Computer Science, Physics and Mathematics.
2012 (English)Report (Other academic)
Abstract [en]

This paper addresses electromagnetic wave propagation in High Voltage Direct Current (HVDC) power cables. An electromagnetic model, based on long (10 km or more) cables with a frequency range of 0 to 100 kHz, is derived. Relating the frequency to the propagation constant a dispersion relation is formulated using a recursive approach. The propagation constant is found numerically with normalized residue calculation. The paper is concluded with a sensitivity analysis of the propagation constant with respect to the electrical parameters εr (the real relative permittivity) and σ (the conductivity)

Place, publisher, year, edition, pages
Växjö: Linnaeus University, Scool of Computer Science, Physics and Mathematics , 2012.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:lnu:diva-22296OAI: oai:DiVA.org:lnu-22296DiVA: diva2:565183
Available from: 2012-11-14 Created: 2012-11-06 Last updated: 2017-01-10Bibliographically approved
In thesis
1. Electromagnetic dispersion modeling and analysis for HVDC power cables
Open this publication in new window or tab >>Electromagnetic dispersion modeling and analysis for HVDC power cables
2012 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Derivation of an electromagnetic model, regarding the wave propagation in a very long (10 km or more) High Voltage Direct Current (HVDC) power cable, is the central part of this thesis. With an existing “perfect” electromagnetic model there are potentially a wide range of applications.The electromagnetic model is focused on frequencies between 0 and 100 kHz since higher frequencies essentially will be attenuated. An exact dispersion relation is formulated and the propagation constant is computed numerically. The dominating mode is the first Transversal Magnetic (TM) mode of order zero, denoted TM01, which is also referred to as the quasi-TEM mode. A comparison is made with the second propagating TM mode of order zero denoted TM02. The electromagnetic model is verified against real time data from Time Domain Reflection (TDR) measurements on a HVDC power cable. A mismatch calibration procedure is performed due to matching difficulties between the TDR measurement equipment and the power cable regarding the single-mode transmission line model.An example of power cable length measurements is addressed, which reveals that with a “perfect” model the length of an 80 km long power cable could be estimated to an accuracy of a few centimeters. With the present model the accuracy can be estimated to approximately 100 m.In order to understand the low-frequency wave propagation characteristics, an exact asymptotic analysis is performed. It is shown that the behavior of the propagation constant is governed by a square root of the complex frequency in the lowfrequency domain. This thesis also focuses on an analysis regarding the sensitivity of the propagation constant with respect to some of the electric parameters in the model. Variables of interest when performing the parameter sensitivity study are the real relative permittivityand the conductivity.

Place, publisher, year, edition, pages
Växjö: , 2012. 10 p.
Keyword
HVDC power cables, electromagnetic model, TDR measurement, sensitivity analysis, dispersion relation, propagation constant, low-frequency asymptotics
National Category
Other Physics Topics
Identifiers
urn:nbn:se:lnu:diva-32525 (URN)
Presentation
2012-12-11, D1136, Växjö, 13:15 (English)
Opponent
Supervisors
Available from: 2014-08-19 Created: 2014-02-27 Last updated: 2014-08-19Bibliographically approved
2. Electromagnetic Dispersion Modeling and Analysis for Power Cables
Open this publication in new window or tab >>Electromagnetic Dispersion Modeling and Analysis for Power Cables
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis addresses electromagnetic wave propagation in power cables. It consists of five papers, where the three first papers are based on one and the same model, and the last two papers are based on a similar but slightly different model. The first model considers electromagnetic modeling in connection with basic transmission line theory with a mismatch calibration of the scattering parameters, while the second model is based on a magnetic frill generator with calibration on the input current.

The two models describe the dispersion characteristics of an 82 km long High Voltage Direct Current (HVDC) power cable, and the results are validated with Time Domain Reflectometry (TDR) measurements. In both models the relevant bandwidth is 100 kHz, with the result that the fields inside the metallic layers must be calculated due to a large skin-depth. The present study is concerned with Transversal Magnetic (TM) modes of order zero. Higher order TM modes, including the Transversal Electric (TE) modes, will essentially be cut-off in this low-frequency regime.

An asymptotic analysis regarding the low-frequency dispersion characteristics is provided in Paper I. Comparing the result with a numerical solution shows that the low-frequency characteristics of the power cable is complicated, and an asymptotic solution is only valid at frequencies below 1 Hz.

Paper II presents a sensitivity analysis of the propagation constant. It is concluded that some of the electrical parameters of the metallic layers, and of the insulating layer, have a large impact on the model, while other parameters do not perturb the model in any substantial way.

In Paper III a general framework for the electromagnetic modeling is provided. The paper addresses sensitivity analysis, computation, and measurements regarding wave propagation characteristics in power cables.

The asymptotic behavior of the non-discrete radiating mode, the branch-cut, is presented in Paper IV. The result is compared with the first and second propagating Transversal Magnetic (TM) mode.

Finally, Paper V addresses the numerical problems associated with large arguments in the Bessel functions, which are due to the large conductivity parameters of the metallic layers. The introduction of a perfect electric conductor (PEC) and a short illustration of an inverse problem are also discussed in the paper. At the end an analysis is presented regarding uncertainties in the model parameters, which shows that temperature is an important parameter to consider.

 

Place, publisher, year, edition, pages
Växjö: Linnaeus University Press, 2014
Series
Linnaeus University Dissertations, 182/2014
Keyword
power cable, electromagnetic model, dispersion relation, asymptotic analysis, sensitivity analysis
National Category
Physical Sciences
Identifiers
urn:nbn:se:lnu:diva-40651 (URN)978-91-87925-07-8 (ISBN)
Public defence
2014-10-23, D1136, Växjö, 10:00 (English)
Opponent
Supervisors
Available from: 2015-04-28 Created: 2015-03-07 Last updated: 2015-04-28Bibliographically approved

Open Access in DiVA

fulltext(846 kB)298 downloads
File information
File name FULLTEXT02.pdfFile size 846 kBChecksum SHA-512
f7deec1cd6c717440e2d9225df83698917b157371fac3052f2f8e5950b8aaf59fd47705c21c5564fabf5acf9116f99c6a5cd75d9143b035f0d19638565058a4c
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Gustafsson, StefanNordebo, SvenNilsson, Börje
By organisation
School of Computer Science, Physics and Mathematics
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 298 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 198 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf