Change search
ReferencesLink to record
Permanent link

Direct link
Assessment of the applicability of XFEM in Abaqus for modeling crack growth in rubber.
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
2012 (English)Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

The eXtended Finite Element Method is a partition of unity based method, particularly suitable for modelling crack propagation phenomena, without knowing a priori the crack path. Its numerical implementation is mostly achieved with stand-alone codes. The implementation of the eXtended Finite Element Method in commercial FEA softwares is still limited, and the most famous one including such capabilities is Abaqus TM. However, due to its relatively recent intro-duction, XFEM technique in Abaqus has been proved to provide trustable results only in few simple benchmark problems involving linear elastic material models.In this work, we present an assessment of the applicability of the eXtendend Finite Element Method in Abaqus, to deal with fracture mechanics problems of rubber-like materials. Results are provided for both Neo-Hookean and Arruda-Boyce material models, under plane strain conditions. In the rst part of this work, a static analysis for the pure Mode-I and for a 45o mixed-Mode load condition, whose objective has been to evaluate the ability of the XFEM technique in Abaqus, to correctly model the stress and displacement elds around a crack tip, has been performed. Outcomes from XFEM analysis with coarse meshes have been compared with the analogous ones obtained with highly re ned standard FEM discretizations. Noteworthy, despite the remarkable level of accuracy in analyzing the displacement eld at the crack tip, concerning the stress eld, the adoption of the XFEM provides no bene ts, if compared to the standard FEM formulation. The only remarkable advantage is the possibility to discretize the model without the mesh con-forming the crack geometry. Furthermore, the dynamic process of crack propagation has been analyzed by means of the XFEM. A 45o mixed-Mode and a 30o mixed-Mode load condition are analyzed. In particular, three fundamental aspects of the crack propagation phenomenon have been investigated, i.e. the instant at which a pre-existing crack starts to propagate within the body under the applied boundary conditions, the crack propagation direction and the predicted crack propagation speeds. According to the obtained results, the most inuent parameters are thought to be the elements size at the crack tip hand the applied displacement ratev. Severe diculties have been faced to attain convergence. Some reasonable motivations of the unsatisfactory convergence behaviour are proposed.

Place, publisher, year, edition, pages
2012. , 76 p.
Keyword [en]
Fracture Mechanics; eXtended Finite Element Method; Rubber-like materials; Abaqus
National Category
Applied Mechanics
URN: urn:nbn:se:kth:diva-103919OAI: diva2:562498
Subject / course
Solid Mechanics
Available from: 2012-11-13 Created: 2012-10-24 Last updated: 2012-11-13Bibliographically approved

Open Access in DiVA

LuigiGigliotti(3750 kB)6872 downloads
File information
File name FULLTEXT01.pdfFile size 3750 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Solid Mechanics (Dept.)
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 6872 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 937 hits
ReferencesLink to record
Permanent link

Direct link