Change search
ReferencesLink to record
Permanent link

Direct link
Support Vector Machines for Optimizing Speaker Recognition Problems.
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Optimization and Systems Theory.
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Optimization and Systems Theory.
2012 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Classi cation of data has many applications, amongst others within the eld of speaker

recognition. Speaker recognition is the part of speech processing concerned with the task of

automatically identifying or verifying speakers using dierent characteristics of their voices.

The main focus in speaker recognition is to nd methods that separate data, in order to

dierentiate between dierent speakers. In this thesis, such a method is obtained by building

a support vector machine, which has proved to be a very good tool for separating all kinds of

data. The rst version of the support vector machine is used to separate linearly separable

data using linear hyperplanes, and it is then modi ed to separate linearly non-separable

data, by allowing some data points to be misclassi ed. Finally, the support vector machine

is improved further, through a generalization to higher dimensional data and by the use of

dierent kernels and thus higher order hyperplanes. The developed support vector machine

is in the end used on a set of speaker recognition data. The separation of two speakers are

not very satisfying, most likely due to the very limited set of data. However, the results are

very good when the support vector machine is used on other, more complete, sets of data.

Abstract [sv]

Klassi cering av data har manga anvandningsomraden, bland annat inom rostigenkanning.

Rostigenkanning ar en del av talmodellering som behandlar problemet med att kunna identi

era talare och veri era en talares identitet med hjalp av karakteristiska drag hos dennes

rost. Fokus ligger pa att hitta metoder som kan separera data, for att sedan kunna separera

talare. I detta kandidatexamensarbete byggs, for detta syfte, en

support vector machine


has visats vara ett bra satt att separera olika data. Den forsta versionen anvands pa data

som ar linjart separerbart i tva dimensioner, sedan utvecklas den till att kunna separera data

som inte ar linjart separerbart, genom att tillata vissa datapunkter att bli felklassi cerade.

Slutligen modi eras denna support vector machine till att kunna separera data i hogre dimensioner,

samt anvanda olika karnor for att ge separerande hyperplan av hogre ordning.

Den fardiga versionen av denna support vector machine anvands till sist pa data for ett

rostigenkanningsproblem. Resultatet av att separera tva talare var inte tillfredsstallande,

dock skulle mer data fran olika talare ge ett battre resultat. Nar daretmot en annan, mer

komplett, mangd av data anvands for att bygga denna support vector machine blir resultatet

valdigt bra.

Place, publisher, year, edition, pages
2012. , 40 p.
National Category
Engineering and Technology
URN: urn:nbn:se:kth:diva-103821OAI: diva2:561939
Available from: 2013-01-07 Created: 2012-10-22 Last updated: 2013-02-15Bibliographically approved

Open Access in DiVA

fulltext(859 kB)382 downloads
File information
File name FULLTEXT02.pdfFile size 859 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Optimization and Systems Theory
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 382 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 172 hits
ReferencesLink to record
Permanent link

Direct link