Change search
ReferencesLink to record
Permanent link

Direct link
Geometric reduction and the three body problem
Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, Department of Mathematical Sciences.
2012 (English)Doctoral thesis, monograph (Other academic)
Abstract [en]

This dissertation investigates a particular reduction of the three body problem, using a combination of Riemannian geometry and geometric invariant theory of three body motions in Euclidean space. Our point of departure is the reduction that is described in [HS07]. Here, we present this reduction from a new point of view. This viewpoint emphasizes the flexibility in the choice of geometric invariants of three body motions, within one particular class of systems of invariants. Many of our important calculations are based on the singular value decomposition of matrices, and we show that the flexibility of the geometric invariants is strongly related to the flexibility of the singular value decomposition. In addition, we go some steps further than [HS07]: In the context of the three dimensional three body problem, we calculate the reduced equations of motion in terms of our chosen system of invariants. The rotational part of this reduction is extended to the general case of many particle systems evolving in three dimensional space. We also include a large discussion on the conformal geometry of the shape invariants of the three body problem.

Place, publisher, year, edition, pages
NTNU, 2012.
Doctoral theses at NTNU, ISSN 1503-8181 ; 2012:211
National Category
URN: urn:nbn:no:ntnu:diva-17522ISBN: 978-82-471-3721-5 (printed ver.)ISBN: 978-82-471-3722-2 (electronic ver.)OAI: diva2:559275
Public defence
2012-09-07, 00:00
Available from: 2012-10-08 Created: 2012-10-08 Last updated: 2012-10-08Bibliographically approved

Open Access in DiVA

fulltekst(1727 kB)517 downloads
File information
File name FULLTEXT01.pdfFile size 1727 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Department of Mathematical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 517 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 54 hits
ReferencesLink to record
Permanent link

Direct link