CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt155",{id:"formSmash:upper:j_idt155",widgetVar:"widget_formSmash_upper_j_idt155",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt156_j_idt158",{id:"formSmash:upper:j_idt156:j_idt158",widgetVar:"widget_formSmash_upper_j_idt156_j_idt158",target:"formSmash:upper:j_idt156:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On some Numerical Methods and Solution Techniques for Incompressible Flow ProblemsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2012 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Uppsala: Acta Universitatis Upsaliensis, 2012. , 56 p.
##### Series

Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 954
##### National Category

Computational Mathematics
##### Research subject

Scientific Computing with specialization in Numerical Analysis
##### Identifiers

URN: urn:nbn:se:uu:diva-179410ISBN: 978-91-554-8429-3 (print)OAI: oai:DiVA.org:uu-179410DiVA: diva2:544511
##### Public defence

2012-09-24, Room 2446, Polacksbacken, Lägerhyddsvägen 2D, Uppsala, 14:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt452",{id:"formSmash:j_idt452",widgetVar:"widget_formSmash_j_idt452",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt458",{id:"formSmash:j_idt458",widgetVar:"widget_formSmash_j_idt458",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt464",{id:"formSmash:j_idt464",widgetVar:"widget_formSmash_j_idt464",multiple:true});
Available from: 2012-09-03 Created: 2012-08-14 Last updated: 2013-01-22Bibliographically approved
##### List of papers

The focus of this work is on numerical solution methods for solving the incompressible Navier-Stokes equations, which consist of a set of coupled nonlinear partial differential equations.

In general, after linearization and finite element discretization in space, the original nonlinear problem is converted into finding the solutions of a sequence of linear systems of equations. Because of the underlying mathematical model, the coefficient matrix of the linear system is indefinite and nonsymmetric of two-by-two block structure. Due to their less demands for computer resources than direct methods, iterative solution methods are chosen to solve these linear systems. In order to accelerate the convergence rate of the iterative methods, efficient preconditioning techniques become essential. How to construct numerically efficient preconditioners for two-by-two block systems arising in the incompressible Navier-Stokes equations has been studied intensively during the past decades, and is also a main concern in this thesis.

The Navier-Stokes equations depend on various problem parameters, such as density and viscosity, that themselves may vary in time and space as in multiphase systems. In this thesis we follow the following strategy. First, we consider the stationary Navier-Stokes equations with constant viscosity and density, and contribute to the search of efficient preconditioners by analyzing and testing the element-by-element approximation method of the Schur complement matrix and the so-called augmented Lagrangian method. Second, the variation of the viscosity is an important factor and affects the behavior of the already known preconditioners, proposed for two-by-two block matrices. To this end, we choose the augmented Lagrangian method and analyse the impact of the variation of the viscosity on the resulting preconditioner. Finally, we consider the Navier-Stokes equations with their full complexity, namely, time dependence, variable density and variable viscosity. Fast and reliable solution methods are constructed based on a reformulation of the original equations and some operator splitting techniques. Preconditioners for the so-arising linear systemsare also analyzed and tested.

1. Element-by-element Schur complement approximations for general nonsymmetric matrices of two-by-two block form$(function(){PrimeFaces.cw("OverlayPanel","overlay320240",{id:"formSmash:j_idt500:0:j_idt504",widgetVar:"overlay320240",target:"formSmash:j_idt500:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. On an augmented Lagrangian-based preconditioning of Oseen type problems$(function(){PrimeFaces.cw("OverlayPanel","overlay431183",{id:"formSmash:j_idt500:1:j_idt504",widgetVar:"overlay431183",target:"formSmash:j_idt500:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Preconditioning the incompressible Navier-Stokes equations with variable viscosity$(function(){PrimeFaces.cw("OverlayPanel","overlay544510",{id:"formSmash:j_idt500:2:j_idt504",widgetVar:"overlay544510",target:"formSmash:j_idt500:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Efficiently parallel implementation of the inverse Sherman–Morrison algorithm$(function(){PrimeFaces.cw("OverlayPanel","overlay543793",{id:"formSmash:j_idt500:3:j_idt504",widgetVar:"overlay543793",target:"formSmash:j_idt500:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. On preconditioning incompressible non-Newtonian flow problems$(function(){PrimeFaces.cw("OverlayPanel","overlay543792",{id:"formSmash:j_idt500:4:j_idt504",widgetVar:"overlay543792",target:"formSmash:j_idt500:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. Numerical solution of the time-dependent Navier–Stokes equation for variable density–variable viscosity$(function(){PrimeFaces.cw("OverlayPanel","overlay544238",{id:"formSmash:j_idt500:5:j_idt504",widgetVar:"overlay544238",target:"formSmash:j_idt500:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1176",{id:"formSmash:j_idt1176",widgetVar:"widget_formSmash_j_idt1176",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1234",{id:"formSmash:lower:j_idt1234",widgetVar:"widget_formSmash_lower_j_idt1234",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1236_j_idt1238",{id:"formSmash:lower:j_idt1236:j_idt1238",widgetVar:"widget_formSmash_lower_j_idt1236_j_idt1238",target:"formSmash:lower:j_idt1236:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});