Change search
ReferencesLink to record
Permanent link

Direct link
Role of Tin+ and Aln+ ion irradiation (n=1, 2) during Ti1-xAlxN alloy film growth in a hybrid HIPIMS/magnetron mode
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-4898-5115
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Sweden Seco Tools AB, Sweden .
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Show others and affiliations
2012 (English)In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 206, no 19-20, 4202-4211 p.Article in journal (Refereed) Published
Abstract [en]

Metastable Ti1-xAlxN (0.4 less than= x less than= 0.76) films are grown using a hybrid approach in which high-power pulsed magnetron sputtering (HIPIMS) is combined with dc magnetron sputtering (DCMS). Elemental Al and Ti metal targets are co-sputtered with one operated in HIPIMS mode and the other target in DCMS; the positions of the targets are then switched for the next set of experiments. In both cases, the AlN concentration in the co-sputtered films, deposited at T-s = 500 degrees C with R = 1.5-5.3 angstrom/s, is controlled by adjusting the average DCMS target power. Resulting films are analyzed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, elastic recoil detection analysis, and nanoindentation. Mass spectroscopy is used to determine ion energy distribution functions at the substrate. The distinctly different flux distributions obtained from targets driven in HIPIMS vs. DCMS modes allow the effects of Aln+ and Tin+ (n = 1, 2) ion irradiation on film growth kinetics, and resulting properties, to be investigated separately. Bombardment with Aln+ ions (primarily Al+ in the Al-HIPIMS/Ti-DCMS configuration) during film growth leads to NaCl-structure Ti1-xAlxN (0.53 less than= x less than= 0.60) films which exhibit high hardness (greater than30 GPa) with low stress (0.2-0.7 GPa tensile). In contrast, films with corresponding AlN concentrations grown under Tin+ metal ion irradiation (with a significant Ti2+ component) in the Ti-HIPIMS/Al-DCMS mode have much lower hardness, 18-19 GPa, and high compressive stress ranging up to 2.7 GPa. The surprisingly large variation in mechanical properties results from the fact that the kinetic AlN solubility limit x(max) in Ti1-xAlxN depends strongly on, in addition to T-s and R, the target power configuration during growth and hence the composition of the ion flux. AlN with x(max)similar to 64 mol% can be accommodated in the NaCl structure under Aln+ ion flux, compared with similar to 40 mol% for growth with Tin+ flux. The strong asymmetry in film growth reaction paths is due primarily to the fact that the doubly-ionized metal ion flux is approximately two orders of magnitude higher from the Ti target, than from Al, powered with HIPIMS. This asymmetry becomes decisive upon application of a moderate substrate bias voltage, -60 V, applied synchronously with HIPIMS pulses, during growth.

Place, publisher, year, edition, pages
Elsevier , 2012. Vol. 206, no 19-20, 4202-4211 p.
Keyword [en]
HIPIMS; TiAlN; Ionized PVD; Sputtering; HPPMS
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-79709DOI: 10.1016/j.surfcoat.2012.04.024ISI: 000305662400053OAI: diva2:544086
Available from: 2012-08-13 Created: 2012-08-13 Last updated: 2016-08-31

Open Access in DiVA

fulltext(791 kB)380 downloads
File information
File name FULLTEXT01.pdfFile size 791 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Greczynski, GrzegorzLu, JunJensen, JensPetrov, IvanGreene, Joseph EHultman, Lars
By organisation
Thin Film PhysicsThe Institute of Technology
In the same journal
Surface & Coatings Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 380 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 216 hits
ReferencesLink to record
Permanent link

Direct link