References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

High Order Local Radial Basis Function Methods for Atmospheric Flow SimulationsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2012 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Uppsala: Acta Universitatis Upsaliensis, 2012. , 37 p.
##### Series

Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 951
##### Keyword [en]

Radial basis function, meshless method, high order finite difference, atmospheric flow, hyper-viscosity, stable algorithm
##### National Category

Computational Mathematics
##### Research subject

Scientific Computing
##### Identifiers

URN: urn:nbn:se:uu:diva-179194ISBN: 978-91-554-8421-7OAI: oai:DiVA.org:uu-179194DiVA: diva2:543650
##### Public defence

2012-09-21, Room 2446, Polacksbacken, Lägerhyddsvägen 2D, Uppsala, 10:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2012-08-29 Created: 2012-08-09 Last updated: 2013-01-22Bibliographically approved
##### List of papers

Since the introduction of modern computers, numerical methods for atmospheric simulations have routinely been applied for weather prediction, and in the last fifty years, there has been a steady improvement in the accuracy of forecasts. Accurate numerical models of the atmosphere are also becoming more important as researchers rely on global climate simulations to assess and understand the impact of global warming.

The choice of grid in a numerical model is an important design decision and no obvious optimal choice exists for computations in spherical geometry. Despite this disadvantage, grid-based methods are found in all current circulation models. A different approach to the issue of discretizing the surface of the sphere is given by meshless methods, of which radial basis function (RBF) methods are becoming prevalent.

In this thesis, RBF methods for simulation of atmospheric flows are explored. Several techniques are introduced to increase the efficiency of the methods. By utilizing a novel algorithm for adaptively placing the node points, accuracy is shown to improve by over one order of magnitude for two relevant test problems. The computational cost can also be reduced by using a local finite difference-like RBF scheme. However, this requires a stabilization mechanism for the hyperbolic problems of interest here. A hyper-viscosity scheme is introduced to address this issue.

Another stability issue arising from the ill-conditioning of the RBF basis for almost-flat basis functions is also discussed in the thesis, and two algorithms are proposed for dealing with this stability problem. The algorithms are specifically tailored for the task of creating finite difference weights using RBFs and are expected to overcome the issue of stationary error in local RBF collocation.

1. Rotational transport on a sphere: Local node refinement with radial basis functions$(function(){PrimeFaces.cw("OverlayPanel","overlay280198",{id:"formSmash:j_idt423:0:j_idt427",widgetVar:"overlay280198",target:"formSmash:j_idt423:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Stabilization of RBF-generated finite difference methods for convective PDEs$(function(){PrimeFaces.cw("OverlayPanel","overlay435014",{id:"formSmash:j_idt423:1:j_idt427",widgetVar:"overlay435014",target:"formSmash:j_idt423:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere$(function(){PrimeFaces.cw("OverlayPanel","overlay523908",{id:"formSmash:j_idt423:2:j_idt427",widgetVar:"overlay523908",target:"formSmash:j_idt423:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions$(function(){PrimeFaces.cw("OverlayPanel","overlay543636",{id:"formSmash:j_idt423:3:j_idt427",widgetVar:"overlay543636",target:"formSmash:j_idt423:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Stable calculation of Gaussian-based RBF-FD stencils$(function(){PrimeFaces.cw("OverlayPanel","overlay543638",{id:"formSmash:j_idt423:4:j_idt427",widgetVar:"overlay543638",target:"formSmash:j_idt423:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1088",{id:"formSmash:lower:j_idt1088",widgetVar:"widget_formSmash_lower_j_idt1088",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1089_j_idt1091",{id:"formSmash:lower:j_idt1089:j_idt1091",widgetVar:"widget_formSmash_lower_j_idt1089_j_idt1091",target:"formSmash:lower:j_idt1089:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});